Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2014, Volume 55, Number 5, Pages 1104–1117 (Mi smj2591)  

This article is cited in 3 scientific papers (total in 3 papers)

$\Phi$-harmonic functions on discrete groups and the first $\ell^\Phi$-cohomology

Ya. A. Kopylovab, R. A. Panenkoa

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (358 kB) Citations (3)
References:
Abstract: We study the first cohomology groups of a countable discrete group $G$ with coefficients in a $G$-module $\ell^\Phi(G)$, where $\Phi$ is an $n$-function of class $\Delta_2(0)\cap\nabla_2(0)$. Developing the ideas of Puls and Martin–Valette for a finitely generated group $G$, we introduce the discrete $\Phi$-Laplacian and prove a theorem on the decomposition of the space of $\Phi$-Dirichlet finite functions into the direct sum of the spaces of $\Phi$-harmonic functions and $\ell^\Phi(G)$ (with an appropriate factorization). We prove also that if a finitely generated group $G$ has a finitely generated infinite amenable subgroup with infinite centralizer then $\overline H^1(G,\ell^\Phi(G))=0$. In conclusion, we show the triviality of the first cohomology group for the wreath product of two groups one of which is nonamenable.
Keywords: group, $N$-function, Orlicz space, $\Delta_2$-regularity, $\Phi$-harmonic function, $1$-cohomology.
Received: 11.11.2013
English version:
Siberian Mathematical Journal, 2014, Volume 55, Issue 5, Pages 904–914
DOI: https://doi.org/10.1134/S0037446614050097
Bibliographic databases:
Document Type: Article
UDC: 512.664.4+517.986.6
Language: Russian
Citation: Ya. A. Kopylov, R. A. Panenko, “$\Phi$-harmonic functions on discrete groups and the first $\ell^\Phi$-cohomology”, Sibirsk. Mat. Zh., 55:5 (2014), 1104–1117; Siberian Math. J., 55:5 (2014), 904–914
Citation in format AMSBIB
\Bibitem{KopPan14}
\by Ya.~A.~Kopylov, R.~A.~Panenko
\paper $\Phi$-harmonic functions on discrete groups and the first $\ell^\Phi$-cohomology
\jour Sibirsk. Mat. Zh.
\yr 2014
\vol 55
\issue 5
\pages 1104--1117
\mathnet{http://mi.mathnet.ru/smj2591}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3289114}
\transl
\jour Siberian Math. J.
\yr 2014
\vol 55
\issue 5
\pages 904--914
\crossref{https://doi.org/10.1134/S0037446614050097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344337300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84911979664}
Linking options:
  • https://www.mathnet.ru/eng/smj2591
  • https://www.mathnet.ru/eng/smj/v55/i5/p1104
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024