Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2014, Volume 55, Number 5, Pages 989–1000 (Mi smj2585)  

This article is cited in 6 scientific papers (total in 6 papers)

On Jørgensen numbers and their analogs for groups of figure-eight orbifolds

A. Yu. Vesninab, A. V. Masleycd

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Omsk State Technical University, Omsk, Russia
c Chelyabinsk State University, Chelyabinsk, Russia
d Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (336 kB) Citations (6)
References:
Abstract: The Jørgensen, Gehring–Martin–Tan, and Tan numbers are defined for every two-generated subgroup of the group $\mathrm{PSL}(2,\mathbb C)$. These numbers arise in necessary discreteness conditions for two-generated subgroups. The Jørgensen number equals 1 for the figure-eight knot group. We calculate the above numbers or give some two-sided bounds of them for this group and groups of hyperbolic orbifolds with singularities along the figure-eight knot.
Keywords: hyperbolic space, discrete group of transformations, knot, orbifold.
Received: 24.02.2014
English version:
Siberian Mathematical Journal, 2014, Volume 55, Issue 5, Pages 807–816
DOI: https://doi.org/10.1134/S0037446614050036
Bibliographic databases:
Document Type: Article
UDC: 514.132+512.817
Language: Russian
Citation: A. Yu. Vesnin, A. V. Masley, “On Jørgensen numbers and their analogs for groups of figure-eight orbifolds”, Sibirsk. Mat. Zh., 55:5 (2014), 989–1000; Siberian Math. J., 55:5 (2014), 807–816
Citation in format AMSBIB
\Bibitem{VesMas14}
\by A.~Yu.~Vesnin, A.~V.~Masley
\paper On J\o rgensen numbers and their analogs for groups of figure-eight orbifolds
\jour Sibirsk. Mat. Zh.
\yr 2014
\vol 55
\issue 5
\pages 989--1000
\mathnet{http://mi.mathnet.ru/smj2585}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3289108}
\transl
\jour Siberian Math. J.
\yr 2014
\vol 55
\issue 5
\pages 807--816
\crossref{https://doi.org/10.1134/S0037446614050036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344337300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84911961033}
Linking options:
  • https://www.mathnet.ru/eng/smj2585
  • https://www.mathnet.ru/eng/smj/v55/i5/p989
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:279
    Full-text PDF :86
    References:52
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024