Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2014, Volume 55, Number 5, Pages 971–988 (Mi smj2584)  

This article is cited in 4 scientific papers (total in 4 papers)

The error and guaranteed accuracy of cubature formulas in multidimensional periodic Sobolev spaces

V. L. Vaskevichab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (376 kB) Citations (4)
References:
Abstract: We give an upper bound for the deviation of the norm of a perturbed error from the norm of the original error of a cubature formula in a multidimensional bounded domain. The deviation arises as a result of the joint influence on the computations of small variations of the weights of a cubature formula and rounding in the subsequent calculations of the cubature sum in the given standards (formats) of approximation to real numbers. We estimate the practical error of a cubature formula acting on an arbitrary function from the unit ball of a normed space of integrands. The resulting estimates are applied to studying the practical error of cubature formulas in the case of integrands in Sobolev spaces on a multidimensional cube. The norm of the error in the dual space of the Sobolev class is represented as a positive definite quadratic form in the weights of the cubature formula. We estimate the practical error for cubature formulas constructed as the direct product of quadrature formulas of rectangles along the edges of the unit cube. The weights of this direct product are positive.
Keywords: cubature formula, error, periodic Sobolev space, embedding constant, embedding function, guaranteed accuracy.
Received: 11.07.2014
English version:
Siberian Mathematical Journal, 2014, Volume 55, Issue 5, Pages 792–806
DOI: https://doi.org/10.1134/S0037446614050024
Bibliographic databases:
Document Type: Article
UDC: 517.518.23+517.518.83+519.651
Language: Russian
Citation: V. L. Vaskevich, “The error and guaranteed accuracy of cubature formulas in multidimensional periodic Sobolev spaces”, Sibirsk. Mat. Zh., 55:5 (2014), 971–988; Siberian Math. J., 55:5 (2014), 792–806
Citation in format AMSBIB
\Bibitem{Vas14}
\by V.~L.~Vaskevich
\paper The error and guaranteed accuracy of cubature formulas in multidimensional periodic Sobolev spaces
\jour Sibirsk. Mat. Zh.
\yr 2014
\vol 55
\issue 5
\pages 971--988
\mathnet{http://mi.mathnet.ru/smj2584}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3289107}
\transl
\jour Siberian Math. J.
\yr 2014
\vol 55
\issue 5
\pages 792--806
\crossref{https://doi.org/10.1134/S0037446614050024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344337300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84911977892}
Linking options:
  • https://www.mathnet.ru/eng/smj2584
  • https://www.mathnet.ru/eng/smj/v55/i5/p971
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:350
    Full-text PDF :115
    References:65
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024