Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2014, Volume 55, Number 5, Pages 959–970 (Mi smj2583)  

This article is cited in 15 scientific papers (total in 15 papers)

Universal methods of the search of normal geodesics on Lie groups with left-invariant sub-Riemannian metric

V. N. Berestovskiĭ

Sobolev Institute of Mathematics, Omsk Branch, Omsk, Russia
References:
Abstract: We obtain two versions of ODEs for the control function of normal geodesics for left-invariant sub-Riemannian metrics on Lie groups, involving only the structure of the Lie algebras of these groups. The first version is applicable to all Lie groups, while the second, to all matrix Lie groups; both versions are different invariant forms of the Hamiltonian system of the Pontryagin maximum principle for a left-invariant time-optimal problem on a Lie group. Basing on the first version, we find sufficient conditions for the normality of all geodesics of a given sub-Finslerian metric on a Lie group; in particular, we show that all three-dimensional Lie groups possess this property. The proofs use simple techniques of linear algebra.
Keywords: control function, Hamiltonian system, invariant sub-Riemannian metric, Lie algebra, Lie group, normal geodesic, Pontryagin maximum principle, shortest arc, time-optimal problem.
Received: 19.02.2014
English version:
Siberian Mathematical Journal, 2014, Volume 55, Issue 5, Pages 783–791
DOI: https://doi.org/10.1134/S0037446614050012
Bibliographic databases:
Document Type: Article
UDC: 519.46+514.763+512.81+519.9+517.911
Language: Russian
Citation: V. N. Berestovskiǐ, “Universal methods of the search of normal geodesics on Lie groups with left-invariant sub-Riemannian metric”, Sibirsk. Mat. Zh., 55:5 (2014), 959–970; Siberian Math. J., 55:5 (2014), 783–791
Citation in format AMSBIB
\Bibitem{Ber14}
\by V.~N.~Berestovski{\v\i}
\paper Universal methods of the search of normal geodesics on Lie groups with left-invariant sub-Riemannian metric
\jour Sibirsk. Mat. Zh.
\yr 2014
\vol 55
\issue 5
\pages 959--970
\mathnet{http://mi.mathnet.ru/smj2583}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3289106}
\transl
\jour Siberian Math. J.
\yr 2014
\vol 55
\issue 5
\pages 783--791
\crossref{https://doi.org/10.1134/S0037446614050012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344337300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84911959474}
Linking options:
  • https://www.mathnet.ru/eng/smj2583
  • https://www.mathnet.ru/eng/smj/v55/i5/p959
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:372
    Full-text PDF :130
    References:59
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024