Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2014, Volume 55, Number 3, Pages 706–714 (Mi smj2565)  

On the strongly closed subgroups or $\mathscr H$-subgroups of finite groups

Zh. C. Shena, W. J. Shib, R. L. Shenc

a China Agricultural University, Beijing, China
b Chongqing University of Arts and Sciences, Chongqing, China
c Huazhong Normal University, Wuhan, China
References:
Abstract: Let $G$ be a finite group. Goldschmidt, Flores, and Foote investigated the concept: Let $K\le G$. A subgroup $H$ of $K$ is called strongly closed in $K$ with respect to $G$ if $H^g\cap K\le H$ for all $g\in G$. In particular, when $H$ is a subgroup of prime-power order and $K$ is a Sylow subgroup containing it, $H$ is simply said to be a strongly closed subgroup. Bianchi and the others called a subgroup $H$ of $G$ an $\mathscr H$-subgroup if $N_G(H)\cap H^g\le H$ for all $g\in G$. In fact, an $\mathscr H$-subgroup of prime power order is the same as a strongly closed subgroup. We give the characterizations of finite non-$\mathscr T$-groups whose maximal subgroups of even order are solvable $\mathscr T$-groups by $\mathscr H$-subgroups or strongly closed subgroups. Moreover, the structure of finite non-$\mathscr T$-groups whose maximal subgroups of even order are solvable $\mathscr T$-groups may be difficult to give if we do not use normality.
Keywords: $\mathscr H$-subgroup, strongly closed subgroup, $\mathscr T$-group, supersolvable group.
Received: 02.06.2013
English version:
Siberian Mathematical Journal, 2014, Volume 55, Issue 3, Pages 578–584
DOI: https://doi.org/10.1134/S0037446614030197
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: Zh. C. Shen, W. J. Shi, R. L. Shen, “On the strongly closed subgroups or $\mathscr H$-subgroups of finite groups”, Sibirsk. Mat. Zh., 55:3 (2014), 706–714; Siberian Math. J., 55:3 (2014), 578–584
Citation in format AMSBIB
\Bibitem{SheShiShe14}
\by Zh.~C.~Shen, W.~J.~Shi, R.~L.~Shen
\paper On the strongly closed subgroups or $\mathscr H$-subgroups of finite groups
\jour Sibirsk. Mat. Zh.
\yr 2014
\vol 55
\issue 3
\pages 706--714
\mathnet{http://mi.mathnet.ru/smj2565}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3237385}
\elib{https://elibrary.ru/item.asp?id=21800685}
\transl
\jour Siberian Math. J.
\yr 2014
\vol 55
\issue 3
\pages 578--584
\crossref{https://doi.org/10.1134/S0037446614030197}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338502400019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903269814}
Linking options:
  • https://www.mathnet.ru/eng/smj2565
  • https://www.mathnet.ru/eng/smj/v55/i3/p706
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :69
    References:53
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024