Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2014, Volume 55, Number 3, Pages 540–552 (Mi smj2551)  

This article is cited in 2 scientific papers (total in 2 papers)

Random systems of equations in free abelian groups

A. V. Men'shov

Omsk State University, Omsk, Russia
Full-text PDF (360 kB) Citations (2)
References:
Abstract: We study the solvability of random systems of equations on the free abelian group $\mathbb Z^m$ of rank $m$. Denote by $\operatorname{SAT}(\mathbb Z^m,k,n)$ and $\operatorname{SAT}_{\mathbb Q^m}(\mathbb Z^m,k,n)$ the sets of all systems of $n$ equations of $k$ unknowns in $\mathbb Z^m$ satisfiable in $\mathbb Z^m$ and $\mathbb Q^m$ respectively. We prove that the asymptotic density $\rho(\operatorname{SAT}_{\mathbb Q^m}(\mathbb Z^m,k,n))$ of the set $\operatorname{SAT}_{\mathbb Q^m}(\mathbb Z^m,k,n)$ equals 1 for $n\le k$ and 0 for $n>k$. As regards, $\operatorname{SAT}(\mathbb Z^m,k,n)$ for $n<k$, some new estimates are obtained for the lower and upper asymptotic densities and it is proved that they lie between $\left(\prod^k_{j=k-n+1}\zeta(j)\right)^{-1}$ and $\left(\frac{\zeta(k+m)}{\zeta(k)}\right)^n$, where $\zeta(s)$ is the Riemann zeta function. For $n\le k$, a connection is established between the asymptotic density of $\operatorname{SAT}(\mathbb Z^m,k,n)$ and the sums of inverse greater divisors over matrices of full rank. Starting from this result, we make a conjecture about the asymptotic density of $\operatorname{SAT}(\mathbb Z^m,n,n)$. We prove that $\rho(\operatorname{SAT}(\mathbb Z^m,k,n))=0$ for $n>k$.
Keywords: free abelian group, equation in a group, asymptotic density, Ehrhart quasipolynomial.
Received: 18.09.2013
English version:
Siberian Mathematical Journal, 2014, Volume 55, Issue 3, Pages 440–450
DOI: https://doi.org/10.1134/S0037446614030057
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: A. V. Men'shov, “Random systems of equations in free abelian groups”, Sibirsk. Mat. Zh., 55:3 (2014), 540–552; Siberian Math. J., 55:3 (2014), 440–450
Citation in format AMSBIB
\Bibitem{Men14}
\by A.~V.~Men'shov
\paper Random systems of equations in free abelian groups
\jour Sibirsk. Mat. Zh.
\yr 2014
\vol 55
\issue 3
\pages 540--552
\mathnet{http://mi.mathnet.ru/smj2551}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3237371}
\elib{https://elibrary.ru/item.asp?id=21800670}
\transl
\jour Siberian Math. J.
\yr 2014
\vol 55
\issue 3
\pages 440--450
\crossref{https://doi.org/10.1134/S0037446614030057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338502400005}
\elib{https://elibrary.ru/item.asp?id=24061952}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903314328}
Linking options:
  • https://www.mathnet.ru/eng/smj2551
  • https://www.mathnet.ru/eng/smj/v55/i3/p540
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025