Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2014, Volume 55, Number 2, Pages 454–471 (Mi smj2546)  

This article is cited in 9 scientific papers (total in 9 papers)

Limit differential inclusions and the invariance principle for nonautonomous systems

I. A. Finogenko

Institute of Systems Dynamics and Control Theory, Irkutsk, Russia
Full-text PDF (371 kB) Citations (9)
References:
Abstract: Considering nonautonomous differential inclusions we introduce the concept of limit differential inclusions, study their properties and invariance-type properties of the $\omega$-limit sets of solutions, and establish an analog of La Salle's invariance principle using Lyapunov functions with the derivatives of constant sign. The method is equally applicable to differential equations and, under appropriate assumptions, yields some previously-available results.
Keywords: limit differential inclusion, nonautonomous system, semi-invariant set, Lyapunov function, invariance principle.
Received: 08.07.2012
English version:
Siberian Mathematical Journal, 2014, Volume 55, Issue 2, Pages 372–386
DOI: https://doi.org/10.1134/S0037446614020190
Bibliographic databases:
Document Type: Article
UDC: 531.911.5
Language: Russian
Citation: I. A. Finogenko, “Limit differential inclusions and the invariance principle for nonautonomous systems”, Sibirsk. Mat. Zh., 55:2 (2014), 454–471; Siberian Math. J., 55:2 (2014), 372–386
Citation in format AMSBIB
\Bibitem{Fin14}
\by I.~A.~Finogenko
\paper Limit differential inclusions and the invariance principle for nonautonomous systems
\jour Sibirsk. Mat. Zh.
\yr 2014
\vol 55
\issue 2
\pages 454--471
\mathnet{http://mi.mathnet.ru/smj2546}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3237347}
\transl
\jour Siberian Math. J.
\yr 2014
\vol 55
\issue 2
\pages 372--386
\crossref{https://doi.org/10.1134/S0037446614020190}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335167300019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899687680}
Linking options:
  • https://www.mathnet.ru/eng/smj2546
  • https://www.mathnet.ru/eng/smj/v55/i2/p454
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024