Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2014, Volume 55, Number 2, Pages 412–426 (Mi smj2543)  

This article is cited in 10 scientific papers (total in 10 papers)

Interrelation between the convergence rates in von Neumann's and Birkhoff's ergodic theorems

V. V. Sedalishchev

Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: In the $L_p$ spaces, $1<p<\infty$, we prove some inequalities for discrete and continuous times that make it possible to obtain the convergence rate in Birkhoff's theorem in the presence of bounds on the convergence rate in von Neumann's ergodic theorem belonging to a sufficiently large rate range. The exact operator analogs of these inequalities for contraction semigroups in $L_p$ are given. These results also have the obvious exact analogs in the class of wide-sense stationary stochastic processes.
Keywords: von Neumann's ergodic theorem, Birkhoff's ergodic theorem, convergence rate of ergodic averages, wide-sense stationary stochastic process, contraction semigroups in $L_p$.
Received: 14.06.2013
English version:
Siberian Mathematical Journal, 2014, Volume 55, Issue 2, Pages 336–348
DOI: https://doi.org/10.1134/S0037446614020165
Bibliographic databases:
Document Type: Article
UDC: 517.987+519.214
Language: Russian
Citation: V. V. Sedalishchev, “Interrelation between the convergence rates in von Neumann's and Birkhoff's ergodic theorems”, Sibirsk. Mat. Zh., 55:2 (2014), 412–426; Siberian Math. J., 55:2 (2014), 336–348
Citation in format AMSBIB
\Bibitem{Sed14}
\by V.~V.~Sedalishchev
\paper Interrelation between the convergence rates in von Neumann's and Birkhoff's ergodic theorems
\jour Sibirsk. Mat. Zh.
\yr 2014
\vol 55
\issue 2
\pages 412--426
\mathnet{http://mi.mathnet.ru/smj2543}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3237344}
\transl
\jour Siberian Math. J.
\yr 2014
\vol 55
\issue 2
\pages 336--348
\crossref{https://doi.org/10.1134/S0037446614020165}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335167300016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899687263}
Linking options:
  • https://www.mathnet.ru/eng/smj2543
  • https://www.mathnet.ru/eng/smj/v55/i2/p412
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024