|
Sibirskii Matematicheskii Zhurnal, 2014, Volume 55, Number 2, Pages 296–303
(Mi smj2533)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On the local case in the Aschbacher theorem for linear and unitary groups
A. A. Galta, W. Guoa, E. M. Averkinb, D. O. Revincb a Department of Mathematics, University of Science and Technology of China, Hefei, P. R. China
b Novosibirsk State University, Novosibirsk, Russia
c Sobolev Institute of Mathematics, Novosibirsk, Russia
Abstract:
We consider the subgroups $H$ in a linear or a unitary group $G$ over a finite field such that $O_r(H)\not\leq Z(G)$ for some odd prime $r$. We obtain a refinement of the well-known Aschbacher theorem on subgroups of classical groups for this case.
Keywords:
linear group, unitary group, Aschbacher class, radical $r$-subgroup.
Received: 25.06.2013
Citation:
A. A. Galt, W. Guo, E. M. Averkin, D. O. Revin, “On the local case in the Aschbacher theorem for linear and unitary groups”, Sibirsk. Mat. Zh., 55:2 (2014), 296–303; Siberian Math. J., 55:2 (2014), 239–245
Linking options:
https://www.mathnet.ru/eng/smj2533 https://www.mathnet.ru/eng/smj/v55/i2/p296
|
Statistics & downloads: |
Abstract page: | 484 | Full-text PDF : | 106 | References: | 85 | First page: | 19 |
|