|
Sibirskii Matematicheskii Zhurnal, 2014, Volume 55, Number 1, Pages 90–96
(Mi smj2515)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Embedding of Baumslag–Solitar groups into the generalized Baumslag–Solitar groups
F. A. Dudkinab a Novosibirsk State University, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Novosibirsk, Russia
Abstract:
A finitely generated group $G$ that acts on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag–Solitar group or GBS-group. Let $p$ and $q$ be coprime integers other than $0,1$, and $-1$. We prove that the Baumslag–Solitar group $BS(p,q)$ embeds into $G$ if and only if the equation $x^{-1}y^px=y^q$ is solvable in $G$ for $y\ne1$ i.e., $\frac pq\in\Delta(G)$, where $\Delta$ is the modular homomorphism.
Keywords:
Baumslag–Solitar group, generalized Baumslag–Solitar group, embedding.
Received: 21.03.2013
Citation:
F. A. Dudkin, “Embedding of Baumslag–Solitar groups into the generalized Baumslag–Solitar groups”, Sibirsk. Mat. Zh., 55:1 (2014), 90–96; Siberian Math. J., 55:1 (2014), 72–77
Linking options:
https://www.mathnet.ru/eng/smj2515 https://www.mathnet.ru/eng/smj/v55/i1/p90
|
Statistics & downloads: |
Abstract page: | 353 | Full-text PDF : | 102 | References: | 75 | First page: | 23 |
|