Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2014, Volume 55, Number 1, Pages 3–10 (Mi smj2507)  

This article is cited in 2 scientific papers (total in 2 papers)

A quasiconformal analog of Carathéodory's criterion for the Möbius property of mappings

V. V. Aseev

Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (292 kB) Citations (2)
References:
Abstract: In 1937, Carathéodory proved that every injective mapping $f\colon G\to f(G)\subset\overline{\mathbf C}$ of a domain $G\subset\overline{\mathbf C}$, taking circles to circles, is Möbius. The present article shows that if each injective mapping takes circles onto $k$-quasicircles then it is $K$-quasiconformal with $K\le k+\sqrt{k^2-1}$.
Keywords: quasiconformal mapping, Möbius mapping, quasicircle, reverse isodiametric inequality.
Received: 31.05.2013
English version:
Siberian Mathematical Journal, 2014, Volume 55, Issue 1, Pages 1–6
DOI: https://doi.org/10.1134/S0037446614010017
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: V. V. Aseev, “A quasiconformal analog of Carathéodory's criterion for the Möbius property of mappings”, Sibirsk. Mat. Zh., 55:1 (2014), 3–10; Siberian Math. J., 55:1 (2014), 1–6
Citation in format AMSBIB
\Bibitem{Ase14}
\by V.~V.~Aseev
\paper A quasiconformal analog of Carath\'eodory's criterion for the M\"obius property of mappings
\jour Sibirsk. Mat. Zh.
\yr 2014
\vol 55
\issue 1
\pages 3--10
\mathnet{http://mi.mathnet.ru/smj2507}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3220580}
\transl
\jour Siberian Math. J.
\yr 2014
\vol 55
\issue 1
\pages 1--6
\crossref{https://doi.org/10.1134/S0037446614010017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332453900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894879400}
Linking options:
  • https://www.mathnet.ru/eng/smj2507
  • https://www.mathnet.ru/eng/smj/v55/i1/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:382
    Full-text PDF :104
    References:80
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024