|
Sibirskii Matematicheskii Zhurnal, 2014, Volume 55, Number 1, Pages 3–10
(Mi smj2507)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
A quasiconformal analog of Carathéodory's criterion for the Möbius property of mappings
V. V. Aseev Sobolev Institute of Mathematics, Novosibirsk, Russia
Abstract:
In 1937, Carathéodory proved that every injective mapping $f\colon G\to f(G)\subset\overline{\mathbf C}$ of a domain $G\subset\overline{\mathbf C}$, taking circles to circles, is Möbius. The present article shows that if each injective mapping takes circles onto $k$-quasicircles then it is $K$-quasiconformal with $K\le k+\sqrt{k^2-1}$.
Keywords:
quasiconformal mapping, Möbius mapping, quasicircle, reverse isodiametric inequality.
Received: 31.05.2013
Citation:
V. V. Aseev, “A quasiconformal analog of Carathéodory's criterion for the Möbius property of mappings”, Sibirsk. Mat. Zh., 55:1 (2014), 3–10; Siberian Math. J., 55:1 (2014), 1–6
Linking options:
https://www.mathnet.ru/eng/smj2507 https://www.mathnet.ru/eng/smj/v55/i1/p3
|
Statistics & downloads: |
Abstract page: | 382 | Full-text PDF : | 104 | References: | 80 | First page: | 17 |
|