Abstract:
The Cauchy problem is considered for Wazewski linear differential systems with finite delay. The right-hand sides of systems contain nonnegative matrices and diagonal matrices with negative diagonal entries. The initial data are nonnegative functions. The matrices in equations are such that the zero solution is asymptotically stable. Two-sided estimates for solutions to the Cauchy problem are constructed with the use of the method of monotone operators and the properties of nonsingular M-matrices. The estimates from below and above are zero and exponential functions with parameters determined by solutions to some auxiliary inequalities and equations. Some estimates for solutions to several particular problems are constructed.
Keywords:
Wazewski linear differential systems with delay, exponential stability, Sevast’yanov–Kotelyanskii criterion, exponential estimate, M-matrix, quasinonnegative matrix, Perron root.
Citation:
N. V. Pertsev, “Two-sided estimates for solutions to the Cauchy problem for Wazewski linear differential systems with delay”, Sibirsk. Mat. Zh., 54:6 (2013), 1368–1379; Siberian Math. J., 54:6 (2013), 1088–1097
\Bibitem{Per13}
\by N.~V.~Pertsev
\paper Two-sided estimates for solutions to the Cauchy problem for Wazewski linear differential systems with delay
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 6
\pages 1368--1379
\mathnet{http://mi.mathnet.ru/smj2502}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184101}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 6
\pages 1088--1097
\crossref{https://doi.org/10.1134/S0037446613060153}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329110700015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891282549}
Linking options:
https://www.mathnet.ru/eng/smj2502
https://www.mathnet.ru/eng/smj/v54/i6/p1368
This publication is cited in the following 12 articles:
N. V. Pertsev, “Ustoichivost reshenii lineinykh sistem differentsialnykh uravnenii dinamiki populyatsii s peremennym zapazdyvaniem”, Matem. tr., 27:3 (2024), 74–98
N. V. Pertsev, “Primenenie differentsialnykh uravnenii s peremennym zapazdyvaniem v kompartmentnykh modelyakh zhivykh sistem”, Sib. zhurn. industr. matem., 24:3 (2021), 55–73
N. V. Pertsev, K. K. Loginov, “Nakhozhdenie parametrov eksponentsialnykh otsenok reshenii zadachi Koshi dlya nekotorykh sistem lineinykh differentsialnykh uravnenii s zapazdyvaniem”, Sib. elektron. matem. izv., 18:2 (2021), 1307–1318
N. V. Pertsev, “Application of Differential Equations with Variable Delay in the Compartmental Models of Living Systems”, J. Appl. Ind. Math., 15:3 (2021), 466
K. K. Loginov, N. V. Pertsev, “Asymptotic Behavior of Solutions to a Delay Integro-Differential
Equation Arising in Models of Living Systems”, Sib. Adv. Math., 31:2 (2021), 131
N. V. Pertsev, K. K. Loginov, V. A. Topchii, “Analysis of an epidemic mathematical model based on delay differential equations”, J. Appl. Industr. Math., 14:2 (2020), 396–406
N. V. Pertsev, “Exponential decay estimates for some components of solutions to the nonlinear delay differential equations of the living system models”, Siberian Math. J., 61:4 (2020), 715–724
K. K. Loginov, N. V. Pertsev, “Asimptoticheskoe povedenie reshenii integro-differentsialnogo uravneniya s zapazdyvaniem, voznikayuschego v modelyakh zhivykh sistem”, Matem. tr., 23:2 (2020), 122–147
N. V. Pertsev, “Matrichnye kriterii ustoichivosti i neustoichivosti nekotorykh sistem lineinykh differentsialnykh uravnenii s zapazdyvaniem”, Sib. elektron. matem. izv., 16 (2019), 876–885
A. Yu. Aleksandrov, “Construction of the Lyapunov–Krasovskii functionals for some classes of positive delay systems”, Siberian Math. J., 59:5 (2018), 753–762
N. V. Pertsev, “Study of solutions of a continuous-discrete model of HIV infection spread”, Russ. J. Numer. Anal. Math. Model, 31:5 (2016), 281–291
Dong Ya., Zhang Ya., Zhang X., “Design of Observer-Based Feedback Control For a Class of Discrete-Time Nonlinear Systems With Time-Delay”, Appl. Comput. Math., 13:1 (2014), 107–121