|
Sibirskii Matematicheskii Zhurnal, 2013, Volume 54, Number 6, Pages 1273–1279
(Mi smj2493)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Irreducible representations of subgroups of finite index in Baumslag–Solitar groups
F. A. Dudkinab a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Abstract:
We describe all finite-dimensional irreducible linear representations over the field of complex numbers for an arbitrary subgroup of finite index of a Baumslag–Solitar group $BS(p,q)=\langle a,t\mid t^{-1}a^pt=a^q\rangle$ for coprime $p$ and $q$. We find necessary and sufficient conditions for the equivalence of these representations, using only standard facts of linear algebra and the description of subgroups of finite index in Baumslag–Solitar groups.
Keywords:
Baumslag–Solitar group, irreducible representation, subgroup of finite index.
Received: 13.06.2012 Revised: 16.11.2012
Citation:
F. A. Dudkin, “Irreducible representations of subgroups of finite index in Baumslag–Solitar groups”, Sibirsk. Mat. Zh., 54:6 (2013), 1273–1279; Siberian Math. J., 54:6 (2013), 1013–1017
Linking options:
https://www.mathnet.ru/eng/smj2493 https://www.mathnet.ru/eng/smj/v54/i6/p1273
|
Statistics & downloads: |
Abstract page: | 241 | Full-text PDF : | 91 | References: | 51 | First page: | 4 |
|