Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2013, Volume 54, Number 6, Pages 1250–1262 (Mi smj2491)  

This article is cited in 1 scientific paper (total in 1 paper)

The Green's function of a five-point discretization of a two-dimensional finite-gap Schrödinger operator: The case of four singular points on the spectral curve

B. O. Vasilevskiĭ

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Bogolyubov Laboratory of Geometric Methods in Mathematical Physics, Moscow, Russia
Full-text PDF (336 kB) Citations (1)
References:
Abstract: We consider a regular Riemann surface of finite genus and “generalized spectral data”, a special set of distinguished points on it. From them we construct a discrete analog of the Baker–Akhiezer function with a discrete operator that annihilates it. Under some extra conditions on the generalized spectral data, the operator takes the form of the discrete Cauchy–Riemann operator, and its restriction to the even lattice is annihilated by the corresponding Schrödinger operator. In this article we construct an explicit formula for the Green's function of the indicated operator. The formula expresses the Green's function in terms of the integral along a special contour of a differential constructed from the wave function and the extra spectral data. In result, the Green's function with known asymptotics at infinity can be obtained at almost every point of the spectral curve.
Keywords: discrete operator, finite-gap operator, Green’s function, M-curve.
Received: 04.02.2013
English version:
Siberian Mathematical Journal, 2013, Volume 54, Issue 6, Pages 994–1004
DOI: https://doi.org/10.1134/S0037446613060049
Bibliographic databases:
Document Type: Article
UDC: 514.84
Language: Russian
Citation: B. O. Vasilevskiǐ, “The Green's function of a five-point discretization of a two-dimensional finite-gap Schrödinger operator: The case of four singular points on the spectral curve”, Sibirsk. Mat. Zh., 54:6 (2013), 1250–1262; Siberian Math. J., 54:6 (2013), 994–1004
Citation in format AMSBIB
\Bibitem{Vas13}
\by B.~O.~Vasilevski{\v\i}
\paper The Green's function of a~five-point discretization of a~two-dimensional finite-gap Schr\"odinger operator: The case of four singular points on the spectral curve
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 6
\pages 1250--1262
\mathnet{http://mi.mathnet.ru/smj2491}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184090}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 6
\pages 994--1004
\crossref{https://doi.org/10.1134/S0037446613060049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329110700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891308217}
Linking options:
  • https://www.mathnet.ru/eng/smj2491
  • https://www.mathnet.ru/eng/smj/v54/i6/p1250
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:299
    Full-text PDF :83
    References:56
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024