Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2013, Volume 54, Number 4, Pages 852–870 (Mi smj2462)  

This article is cited in 40 scientific papers (total in 40 papers)

Coefficient characterizations and sections for some univalent functions

M. Obradovića, S. Ponnusamyb, K.-J. Wirthsc

a Department of Mathematics, Faculty of Civil Engineering, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia
b Indian Statistical Institute (ISI), Chennai Centre, SETS (Society for Electronic Transactions and Security), MGR Knowledge City, CIT Campus, Taramani, Chennai 600113 India
c Institut für Analysis und Algebra, TU Braunschweig, Braunschweig 38106 Germany
References:
Abstract: Let $\mathscr G(\alpha)$ denote the class of locally univalent normalized analytic functions $f$ in the unit disk $|z|<1$ satisfying the condition
$$ \mathrm{Re}\left(1+\frac{zf''(z)}{f'(z)}\right)<1+\frac\alpha2\qquad\text{for}\quad|z|<1 $$
and for some $0<\alpha\le1$. We firstly prove sharp coefficient bounds for the moduli of the Taylor coefficients $a_n$ of $f\in\mathscr G(\alpha)$. Secondly, we determine the sharp bound for the Fekete–Szegö functional for functions in $\mathscr G(\alpha)$ with complex parameter $\lambda$. Thirdly, we present a convolution characterization for functions $f$ belonging to $\mathscr G(\alpha)$ and as a consequence we obtain a number of sufficient coefficient conditions for $f$ to belong to $\mathscr G(\alpha)$. Finally, we discuss the close-to-convexity and starlikeness of partial sums of $f\in\mathscr G(\alpha)$. In particular, each partial sum $s_n(z)$ of $f\in\mathscr G(1)$ is starlike in the disk $|z|\le1/2$ for $n\ge11$. Moreover, for $f\in\mathscr G(1)$, we also have $\mathrm{Re}(s'_n(z))>0$ in $|z|\le1/2$ for $n\ge11$.
Keywords: analytic function, univalent function, starlike function, close-to-convex function, convex function, coefficient inequality, area theorem, radius of univalency, subordination, convolution, Fekete–Szegö functional.
Received: 20.09.2012
English version:
Siberian Mathematical Journal, 2013, Volume 54, Issue 4, Pages 679–696
DOI: https://doi.org/10.1134/S0037446613040095
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: M. Obradović, S. Ponnusamy, K.-J. Wirths, “Coefficient characterizations and sections for some univalent functions”, Sibirsk. Mat. Zh., 54:4 (2013), 852–870; Siberian Math. J., 54:4 (2013), 679–696
Citation in format AMSBIB
\Bibitem{ObrPonWir13}
\by M.~Obradovi{\'c}, S.~Ponnusamy, K.-J.~Wirths
\paper Coefficient characterizations and sections for some univalent functions
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 4
\pages 852--870
\mathnet{http://mi.mathnet.ru/smj2462}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3137152}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 4
\pages 679--696
\crossref{https://doi.org/10.1134/S0037446613040095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323742800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84881368079}
Linking options:
  • https://www.mathnet.ru/eng/smj2462
  • https://www.mathnet.ru/eng/smj/v54/i4/p852
  • This publication is cited in the following 40 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :101
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024