Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2013, Volume 54, Number 4, Pages 807–825 (Mi smj2459)  

This article is cited in 15 scientific papers (total in 15 papers)

An optimal control problem with feedback for a mathematical model of the motion of weakly concentrated water polymer solutions with objective derivative

A. V. Zvyagin

Research Institute for Mathematics, Voronezh State University, Voronezh, Russia
References:
Abstract: We study a problem with feedback for a mathematical model of the motion of weakly concentrated water polymer solutions with smoothed Jaumann objective derivative. We prove the existence of an optimal solution yielding the minimum of a specified bounded lower semicontinuous quality functional. To establish the existence of an optimal solution, we use the topological approximation method for studying problems of hydrodynamics.
Keywords: optimal control, topological approximation method, a priori estimate, theory of topological degree of multivalued mappings, weakly concentrated water polymer solution.
Received: 27.07.2012
English version:
Siberian Mathematical Journal, 2013, Volume 54, Issue 4, Pages 640–655
DOI: https://doi.org/10.1134/S003744661304006X
Bibliographic databases:
Document Type: Article
UDC: 517.977.5+517.958
Language: Russian
Citation: A. V. Zvyagin, “An optimal control problem with feedback for a mathematical model of the motion of weakly concentrated water polymer solutions with objective derivative”, Sibirsk. Mat. Zh., 54:4 (2013), 807–825; Siberian Math. J., 54:4 (2013), 640–655
Citation in format AMSBIB
\Bibitem{Zvy13}
\by A.~V.~Zvyagin
\paper An optimal control problem with feedback for a~mathematical model of the motion of weakly concentrated water polymer solutions with objective derivative
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 4
\pages 807--825
\mathnet{http://mi.mathnet.ru/smj2459}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3137149}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 4
\pages 640--655
\crossref{https://doi.org/10.1134/S003744661304006X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323742800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883345641}
Linking options:
  • https://www.mathnet.ru/eng/smj2459
  • https://www.mathnet.ru/eng/smj/v54/i4/p807
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:353
    Full-text PDF :116
    References:61
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024