Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2013, Volume 54, Number 3, Pages 712–720 (Mi smj2453)  

On Taylor's formula for functions of several variables

Yu. G. Reshetnyak

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
References:
Abstract: Elementary courses in mathematical analysis often mention some trick that is used to construct the remainder of Taylor's formula in integral form. The trick is based on the fact that, differentiating the difference $f(x)-f(t)-f'(t)\frac{(x-t)}{1!}-\dots-f^{(r-1)}(t)\frac{(x-t)^{r-1}}{(r-1)!}$ between the function and its degree $r-1$ Taylor polynomial at $t$ with respect to $t$, we obtain $-f^{(r)}(t)\frac{(x-t)^{r-1}}{(r-1)!}$, so that all derivatives of orders below $r$ disappear. The author observed previously a similar effect for functions of several variables. Differentiating the difference between the function and its degree $r-1$ Taylor polynomial at $t$ with respect to its components, we are left with terms involving only order $r$ derivatives. We apply this fact here to estimate the remainder of Taylor's formula for functions of several variables along a rectifiable curve.
Keywords: Taylor formula, rectifiable curve, remainder, functions of class $\mathscr C^r$.
Received: 14.02.2013
English version:
Siberian Mathematical Journal, 2013, Volume 54, Issue 3, Pages 566–573
DOI: https://doi.org/10.1134/S0037446613030208
Bibliographic databases:
Document Type: Article
UDC: 517.53
Language: Russian
Citation: Yu. G. Reshetnyak, “On Taylor's formula for functions of several variables”, Sibirsk. Mat. Zh., 54:3 (2013), 712–720; Siberian Math. J., 54:3 (2013), 566–573
Citation in format AMSBIB
\Bibitem{Res13}
\by Yu.~G.~Reshetnyak
\paper On Taylor's formula for functions of several variables
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 3
\pages 712--720
\mathnet{http://mi.mathnet.ru/smj2453}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3112626}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 3
\pages 566--573
\crossref{https://doi.org/10.1134/S0037446613030208}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000322243600020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84881048518}
Linking options:
  • https://www.mathnet.ru/eng/smj2453
  • https://www.mathnet.ru/eng/smj/v54/i3/p712
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:774
    Full-text PDF :460
    References:66
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024