|
Sibirskii Matematicheskii Zhurnal, 2013, Volume 54, Number 3, Pages 689–699
(Mi smj2451)
|
|
|
|
Determining the image of some singular function
S. Ponomareva, A. Gospodarczykb a Institute of Mathematics, Pomeranian Academy in Słupsk, Arciszewskiego 22b, 76-200 Słupsk, Poland
b University of Gdaësk, Institute of Mathematics, Gdaësk, Poland
Abstract:
The problem is as follows: How to describe graphically the set $T(1)(\Gamma)$ where $T(1)(z)=\int_\Gamma\frac{d\mu(\zeta)}{\zeta-z}$ and $\Gamma=\Gamma_\theta$ is the Von Koch curve, $\theta\in(0,\pi/4)$. In this paper we give some expression permitting us to compute $T-\theta(1)(z)$ for each $z\in\Gamma$ to within an arbitrary $\epsilon>0$. Also we provide an estimate for the error.
Keywords:
Von Koch curve, natural parametrization, quasiconformal mapping, pseudo-analytic mapping, Cauchy-type integral.
Received: 25.03.2012
Citation:
S. Ponomarev, A. Gospodarczyk, “Determining the image of some singular function”, Sibirsk. Mat. Zh., 54:3 (2013), 689–699; Siberian Math. J., 54:3 (2013), 545–554
Linking options:
https://www.mathnet.ru/eng/smj2451 https://www.mathnet.ru/eng/smj/v54/i3/p689
|
Statistics & downloads: |
Abstract page: | 168 | Full-text PDF : | 58 | References: | 51 | First page: | 1 |
|