Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2013, Volume 54, Number 3, Pages 655–672 (Mi smj2449)  

This article is cited in 17 scientific papers (total in 17 papers)

The localization for eigenfunctions of the Dirichlet problem in thin polyhedra near the vertices

S. A. Nazarovab

a Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
References:
Abstract: Under some geometric assumptions, we show that eigenfunctions of the Dirichlet problem for the Laplace operator in an $n$-dimensional thin polyhedron localize near one of its vertices. We construct and justify asymptotics for the eigenvalues and eigenfunctions. For waveguides, which are thin layers between periodic polyhedral surfaces, we establish the presence of gaps and find asymptotics for their geometric characteristics.
Keywords: Dirichlet problem, asymptotics of spectrum, localization of eigenfunctions, spectral gaps.
Received: 25.02.2012
English version:
Siberian Mathematical Journal, 2013, Volume 54, Issue 3, Pages 517–532
DOI: https://doi.org/10.1134/S0037446613030166
Bibliographic databases:
Document Type: Article
UDC: 517.956.227
Language: Russian
Citation: S. A. Nazarov, “The localization for eigenfunctions of the Dirichlet problem in thin polyhedra near the vertices”, Sibirsk. Mat. Zh., 54:3 (2013), 655–672; Siberian Math. J., 54:3 (2013), 517–532
Citation in format AMSBIB
\Bibitem{Naz13}
\by S.~A.~Nazarov
\paper The localization for eigenfunctions of the Dirichlet problem in thin polyhedra near the vertices
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 3
\pages 655--672
\mathnet{http://mi.mathnet.ru/smj2449}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3112622}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 3
\pages 517--532
\crossref{https://doi.org/10.1134/S0037446613030166}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000322243600016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84881066808}
Linking options:
  • https://www.mathnet.ru/eng/smj2449
  • https://www.mathnet.ru/eng/smj/v54/i3/p655
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025