|
Sibirskii Matematicheskii Zhurnal, 2013, Volume 54, Number 3, Pages 637–654
(Mi smj2448)
|
|
|
|
This article is cited in 19 scientific papers (total in 19 papers)
Solvability of cubic equations in $p$-adic integers ($p>3$)
F. M. Mukhamedova, B. A. Omirovb, M. Kh. Saburova, K. K. Masutovab a Faculty of Science, International Islamic University Malaysia
P.O. Box, 141, Kuantan, Pahang, 25710, Malaysia
b Institute of Mathematics at the National University of Uzbekistan, Tashkent, Uzbekistan
Abstract:
We give a criterion for the existence of solutions to an equation of the form $^3+ax=b$, where $a,b\in\mathbb Q_p$, in $p$-adic integers for $p>3$. Moreover, in the case when the equation $x^3+ax=b$ is solvable, we give necessary and sufficient recurrent conditions on a $p$-adic number $x\in\mathbb Z^*_p$ under which $x$ is a solution to the equation.
Keywords:
cubic equation, $p$-adic number, solution, algorithm.
Received: 23.04.2012
Citation:
F. M. Mukhamedov, B. A. Omirov, M. Kh. Saburov, K. K. Masutova, “Solvability of cubic equations in $p$-adic integers ($p>3$)”, Sibirsk. Mat. Zh., 54:3 (2013), 637–654; Siberian Math. J., 54:3 (2013), 501–516
Linking options:
https://www.mathnet.ru/eng/smj2448 https://www.mathnet.ru/eng/smj/v54/i3/p637
|
|