Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2013, Volume 54, Number 3, Pages 620–636 (Mi smj2447)  

This article is cited in 4 scientific papers (total in 4 papers)

Groups with the same prime graph as the orthogonal group $B_n(3)$

Z. Momen, B. Khosravi

Dept. of Pure Math., Faculty of Math. and Computer Sci., Amirkabir University of Technology (Tehran Polytechnic), 424, Hafez Ave., Tehran 15914, Iran
Full-text PDF (389 kB) Citations (4)
References:
Abstract: Let $G$ be a finite group. The prime graph of $G$ is denoted by $\Gamma(G)$. It is proved in [1] that if $G$ is a finite group such that $\Gamma(G)=\Gamma(B_p(3))$, where $p>3$ is an odd prime, then $G\ge B_p(3)$ or $C_p(3)$. In this paper we prove the main result that if $G$ is a finite group such that $\Gamma(G)=\Gamma(B_n(3))$, where $n\ge6$, then $G$ has a unique nonabelian composition factor isomorphic to $B_n(3)$ or $C_n(3)$. Also if $\Gamma(G)=\Gamma(B_4(3))$, then $G$ has a unique nonabelian composition factor isomorphic to $B_4(3)$, $C_4(3)$, or $^2D_4(3)$. It is proved in [2] that if $p$ is an odd prime, then $B_p(3)$ is recognizable by element orders. We give a corollary of our result, generalize the result of [2], and prove that $B_{2k+1}(3)$ is recognizable by the set of element orders. Also the quasirecognition of $B_{2k}(3)$ by the set of element orders is obtained.
Keywords: prime graph, simple group, recognition, quasirecognition.
Received: 25.08.2011
English version:
Siberian Mathematical Journal, 2013, Volume 54, Issue 3, Pages 487–500
DOI: https://doi.org/10.1134/S0037446613030142
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: Z. Momen, B. Khosravi, “Groups with the same prime graph as the orthogonal group $B_n(3)$”, Sibirsk. Mat. Zh., 54:3 (2013), 620–636; Siberian Math. J., 54:3 (2013), 487–500
Citation in format AMSBIB
\Bibitem{MomKho13}
\by Z.~Momen, B.~Khosravi
\paper Groups with the same prime graph as the orthogonal group $B_n(3)$
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 3
\pages 620--636
\mathnet{http://mi.mathnet.ru/smj2447}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3112620}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 3
\pages 487--500
\crossref{https://doi.org/10.1134/S0037446613030142}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000322243600014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84881078485}
Linking options:
  • https://www.mathnet.ru/eng/smj2447
  • https://www.mathnet.ru/eng/smj/v54/i3/p620
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025