|
Sibirskii Matematicheskii Zhurnal, 2013, Volume 54, Number 3, Pages 551–562
(Mi smj2440)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
On a new family of complete $G_2$-holonomy Riemannian metrics on $S^3\times\mathbb R^4$
O. A. Bogoyavlenskaya Novosibirsk State University, Mechanics and Mathematics Department, Novosibirsk, Russia
Abstract:
Studying a system of first-order nonlinear ordinary differential equations for the functions determining a deformation of the standard conic metric over $S^3\times S^3$, we prove the existence of a one-parameter family of complete $G_2$-holonomy Riemannian metrics on $S^3\times\mathbb R^4$.
Keywords:
special holonomy groups, asymptotically locally conic Riemannian metrics.
Received: 06.11.2012
Citation:
O. A. Bogoyavlenskaya, “On a new family of complete $G_2$-holonomy Riemannian metrics on $S^3\times\mathbb R^4$”, Sibirsk. Mat. Zh., 54:3 (2013), 551–562; Siberian Math. J., 54:3 (2013), 431–440
Linking options:
https://www.mathnet.ru/eng/smj2440 https://www.mathnet.ru/eng/smj/v54/i3/p551
|
|