Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2013, Volume 54, Number 3, Pages 498–503 (Mi smj2435)  

This article is cited in 3 scientific papers (total in 3 papers)

On the spectral height of $F$-compact spaces

M. A. Baranovaa, A. V. Ivanovb

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
b Petrozavodsk State University, Faculty of Mathematics, Petrozavodsk, Russia
Full-text PDF (289 kB) Citations (3)
References:
Abstract: We prove that given an ordinal $\alpha$ with $0<\alpha\le\omega_1$ and $\alpha\ne\beta+1$, where $\beta$ is a limit ordinal, there exists an $F$-compact space of spectral height $\alpha$.
Keywords: fully closed mapping, resolution, $F$-compact space, spectral height.
Received: 19.03.2012
English version:
Siberian Mathematical Journal, 2013, Volume 54, Issue 3, Pages 388–392
DOI: https://doi.org/10.1134/S0037446613030026
Bibliographic databases:
Document Type: Article
UDC: 515.12
Language: Russian
Citation: M. A. Baranova, A. V. Ivanov, “On the spectral height of $F$-compact spaces”, Sibirsk. Mat. Zh., 54:3 (2013), 498–503; Siberian Math. J., 54:3 (2013), 388–392
Citation in format AMSBIB
\Bibitem{BarIva13}
\by M.~A.~Baranova, A.~V.~Ivanov
\paper On the spectral height of $F$-compact spaces
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 3
\pages 498--503
\mathnet{http://mi.mathnet.ru/smj2435}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3112608}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 3
\pages 388--392
\crossref{https://doi.org/10.1134/S0037446613030026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000322243600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84881066054}
Linking options:
  • https://www.mathnet.ru/eng/smj2435
  • https://www.mathnet.ru/eng/smj/v54/i3/p498
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :91
    References:52
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024