Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2013, Volume 54, Number 2, Pages 450–467 (Mi smj2432)  

This article is cited in 4 scientific papers (total in 4 papers)

Sobolev spaces on an arbitrary metric measure space: Compactness of embeddings

N. N. Romanovskiĭ

Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (371 kB) Citations (4)
References:
Abstract: We formulate a new definition of Sobolev function spaces on a domain of a metric space in which the doubling condition need not hold. The definition is equivalent to the classical definition in the case that the domain lies in a Euclidean space with the standard Lebesgue measure. The boundedness and compactness are examined of the embeddings of these Sobolev classes into $L_q$ and $C_\alpha$. We state and prove a compactness criterion for the family of functions $L_p(U)$, where $U$ is a subset of a metric space possibly not satisfying the doubling condition.
Keywords: Sobolev class, Nikol'skiĭ class, function on a metric space, embedding theorems, compactness of embedding.
Received: 11.01.2012
English version:
Siberian Mathematical Journal, 2013, Volume 54, Issue 2, Pages 353–367
DOI: https://doi.org/10.1134/S0037446613020171
Bibliographic databases:
Document Type: Article
UDC: 517.518+517.518.23
Language: Russian
Citation: N. N. Romanovskiǐ, “Sobolev spaces on an arbitrary metric measure space: Compactness of embeddings”, Sibirsk. Mat. Zh., 54:2 (2013), 450–467; Siberian Math. J., 54:2 (2013), 353–367
Citation in format AMSBIB
\Bibitem{Rom13}
\by N.~N.~Romanovski{\v\i}
\paper Sobolev spaces on an arbitrary metric measure space: Compactness of embeddings
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 2
\pages 450--467
\mathnet{http://mi.mathnet.ru/smj2432}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3088608}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 2
\pages 353--367
\crossref{https://doi.org/10.1134/S0037446613020171}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317992800017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876452395}
Linking options:
  • https://www.mathnet.ru/eng/smj2432
  • https://www.mathnet.ru/eng/smj/v54/i2/p450
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:428
    Full-text PDF :115
    References:92
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024