Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2013, Volume 54, Number 2, Pages 407–416 (Mi smj2429)  

This article is cited in 12 scientific papers (total in 12 papers)

Multidimensional Latin bitrades

V. N. Potapov

Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: A subset of the $n$-dimensional $k$-valued hypercube is a unitrade or united bitrade whenever the size of its intersections with the one-dimensional faces of the hypercube takes only the values $0$ and $2$. A unitrade is bipartite or Hamiltonian whenever the corresponding subgraph of the hypercube is bipartite or Hamiltonian. The pair of parts of a bipartite unitrade is an $n$-dimensional Latin bitrade. For the $n$-dimensional ternary hypercube we determine the number of distinct unitrades and obtain an exponential lower bound on the number of inequivalent Latin bitrades. We list all possible $n$-dimensional Latin bitrades of size less than $2^{n+1}$.
A subset of the $n$-dimensional $k$-valued hypercube is a $t$-fold MDS code whenever the size of its intersection with each one-dimensional face of the hypercube is exactly $t$. The symmetric difference of two single MDS codes is a bipartite unitrade. Each component of the corresponding Latin bitrade is a switching component of one of these MDS codes. We study the sizes of the components of MDS codes and the possibility of obtaining Latin bitrades of a size given from MDS codes. Furthermore, each MDS code is shown to embed in a Hamiltonian $2$-fold MDS code.
Keywords: MDS code, Latin bitrade, unitrade, component.
Received: 17.03.2012
English version:
Siberian Mathematical Journal, 2013, Volume 54, Issue 2, Pages 317–324
DOI: https://doi.org/10.1134/S0037446613020146
Bibliographic databases:
Document Type: Article
UDC: 519.14
Language: Russian
Citation: V. N. Potapov, “Multidimensional Latin bitrades”, Sibirsk. Mat. Zh., 54:2 (2013), 407–416; Siberian Math. J., 54:2 (2013), 317–324
Citation in format AMSBIB
\Bibitem{Pot13}
\by V.~N.~Potapov
\paper Multidimensional Latin bitrades
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 2
\pages 407--416
\mathnet{http://mi.mathnet.ru/smj2429}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3088605}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 2
\pages 317--324
\crossref{https://doi.org/10.1134/S0037446613020146}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317992800014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876447423}
Linking options:
  • https://www.mathnet.ru/eng/smj2429
  • https://www.mathnet.ru/eng/smj/v54/i2/p407
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024