Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2007, Volume 48, Number 2, Pages 290–312 (Mi smj24)  

This article is cited in 20 scientific papers (total in 20 papers)

Local approximation of uniformly regular Carnot–Carathéodory quasispaces by their tangent

A. V. Greshnov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We prove a local approximation theorem for the Carnot–Carathéodory quasimetrics on uniformly regular (equiregular) Carnot–Carathéodory spaces. Using this theorem, we study convergence of the Carnot–Carathéodory quasispaces to their tangent cones. In particular, we prove a Mitchell type theorem on convergence of an equiregular Carnot–Carathéodory quasispace with distinguished point to its tangent cone.
Keywords: Carnot–Carathéodory space, quasimetric, nilpotent group, local approximation theorem, Gromov–Hausdorff convergence.
Received: 28.06.2004
Revised: 26.06.2006
English version:
Siberian Mathematical Journal, 2007, Volume 48, Issue 2, Pages 229–248
DOI: https://doi.org/10.1007/s11202-007-0024-2
Bibliographic databases:
UDC: 514.763.22+517.518.15+514.752.8
Language: Russian
Citation: A. V. Greshnov, “Local approximation of uniformly regular Carnot–Carathéodory quasispaces by their tangent”, Sibirsk. Mat. Zh., 48:2 (2007), 290–312; Siberian Math. J., 48:2 (2007), 229–248
Citation in format AMSBIB
\Bibitem{Gre07}
\by A.~V.~Greshnov
\paper Local approximation of uniformly regular Carnot--Carath\'eodory quasispaces by their tangent
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 2
\pages 290--312
\mathnet{http://mi.mathnet.ru/smj24}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2330060}
\zmath{https://zbmath.org/?q=an:1164.53343}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 2
\pages 229--248
\crossref{https://doi.org/10.1007/s11202-007-0024-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000245965600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34147140888}
Linking options:
  • https://www.mathnet.ru/eng/smj24
  • https://www.mathnet.ru/eng/smj/v48/i2/p290
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024