Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2012, Volume 53, Number 6, Pages 1401–1412 (Mi smj2392)  

This article is cited in 18 scientific papers (total in 18 papers)

A two-dimensional inverse problem for the viscoelasticity equation

V. G. Romanov

Sobolev Institute of Mathematics, Novosibirsk, Russia
References:
Abstract: For the integrodifferential equation that corresponds to the two-dimensional viscoelasticity problem, we study the problem of determining the density, the elasticity coefficient, and the spaceintegral term in the equation. We assume that the sought functions differ from the given constants only inside the unit disk $D=\{x\in\mathbb R^2\mid|x|<1\}$. As information for solving this inverse problem, we consider the one-parameter family of solutions to the integrodifferential equation corresponding to impulse sources localized on straight lines and, on the boundary of $D$, there are defined the traces of the solutions for some finite time interval. It is shown that the use of a comparatively small part of the given information about the kinematics and the elements of dynamics of the propagating waves makes it possible to reduce the problem under consideration to three consecutively and uniquely solvable inverse problems that together give a solution to the initial inverse problem.
Keywords: viscoelasticity, inverse problem, uniqueness.
Received: 29.03.2012
English version:
Siberian Mathematical Journal, 2012, Volume 53, Issue 6, Pages 1128–1138
DOI: https://doi.org/10.1134/S0037446612060171
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: V. G. Romanov, “A two-dimensional inverse problem for the viscoelasticity equation”, Sibirsk. Mat. Zh., 53:6 (2012), 1401–1412; Siberian Math. J., 53:6 (2012), 1128–1138
Citation in format AMSBIB
\Bibitem{Rom12}
\by V.~G.~Romanov
\paper A two-dimensional inverse problem for the viscoelasticity equation
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 6
\pages 1401--1412
\mathnet{http://mi.mathnet.ru/smj2392}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3074450}
\elib{https://elibrary.ru/item.asp?id=18838188}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 6
\pages 1128--1138
\crossref{https://doi.org/10.1134/S0037446612060171}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312906500017}
\elib{https://elibrary.ru/item.asp?id=20482516}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871693786}
Linking options:
  • https://www.mathnet.ru/eng/smj2392
  • https://www.mathnet.ru/eng/smj/v53/i6/p1401
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024