Abstract:
Let $T$ be a maximal torus in a classical linear group $G$. In this paper we find all simple rational $G$-modules $V$ such that for each vector $\mathbf v\in V$ the closure of the $T$-orbit of $\mathbf v$ is a normal affine variety. For every $G$-module without this property we present a $T$-orbit with nonnormal closure. To solve this problem, we use a combinatorial criterion of normality which is formulated in terms of the set of weights of a simple $G$-module. The same problem for $G=SL(n)$ was solved by the author earlier.
Citation:
K. G. Kuyumzhiyan, “Simple modules of classical linear groups with normal closures of maximal torus orbits”, Sibirsk. Mat. Zh., 53:6 (2012), 1354–1372; Siberian Math. J., 53:6 (2012), 1089–1104
\Bibitem{Kuy12}
\by K.~G.~Kuyumzhiyan
\paper Simple modules of classical linear groups with normal closures of maximal torus orbits
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 6
\pages 1354--1372
\mathnet{http://mi.mathnet.ru/smj2387}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3074445}
\elib{https://elibrary.ru/item.asp?id=18838183}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 6
\pages 1089--1104
\crossref{https://doi.org/10.1134/S0037446612060122}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312906500012}
\elib{https://elibrary.ru/item.asp?id=20482521}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871698198}
Linking options:
https://www.mathnet.ru/eng/smj2387
https://www.mathnet.ru/eng/smj/v53/i6/p1354
This publication is cited in the following 1 articles:
I. I. Bogdanov, K. G. Kuyumzhiyan, “Simple Modules of Exceptional Groups with Normal Closures of Maximal Torus Orbits”, Math. Notes, 92:4 (2012), 445–457