Abstract:
Let RR be a prime ring of characteristic different from 2, with Utumi quotient ring UU and extended centroid CC, δδ a nonzero derivation of RR, GG a nonzero generalized derivation of RR, and f(x1,…,xn)f(x1,…,xn) a noncentral multilinear polynomial over CC. If δ(G(f(r1,…,rn))f(r1,…,rn))=0δ(G(f(r1,…,rn))f(r1,…,rn))=0 for all r1,…,rn∈Rr1,…,rn∈R, then f(x1,…,xn)2f(x1,…,xn)2 is central-valued on RR. Moreover there exists a∈Ua∈U such that G(x)=axG(x)=ax for all x∈Rx∈R and δδ is an inner derivation of RR such that δ(a)=0δ(a)=0.
Keywords:
prime ring, differential identities, generalized derivations.
Citation:
L. Carini, V. De Filippis, “Centralizers of generalized derivations on multilinear polynomials in prime rings”, Sibirsk. Mat. Zh., 53:6 (2012), 1310–1320; Siberian Math. J., 53:6 (2012), 1051–1060
\Bibitem{CarDe 12}
\by L.~Carini, V.~De Filippis
\paper Centralizers of generalized derivations on multilinear polynomials in prime rings
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 6
\pages 1310--1320
\mathnet{http://mi.mathnet.ru/smj2384}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3074442}
\elib{https://elibrary.ru/item.asp?id=18838180}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 6
\pages 1051--1060
\crossref{https://doi.org/10.1134/S0037446612060092}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312906500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871701419}
Linking options:
https://www.mathnet.ru/eng/smj2384
https://www.mathnet.ru/eng/smj/v53/i6/p1310
This publication is cited in the following 27 articles:
Nripendu Bera, Basudeb Dhara, Sukhendu Kar, “Study of commutator involving X-generalized skew derivations and annihilators in prime rings”, Asian-European J. Math., 18:01 (2025)
Vincenzo De Filippis, Giovanni Scudo, Feng Wei, “On X-generalized skew derivations and their applications”, J. Algebra Appl., 23:03 (2024)
Francesco Rania, “Power central valued b-generalized skew derivations on Lie ideals”, Rend. Circ. Mat. Palermo, II. Ser, 2024
Nripendu Bera, Basudeb Dhara, “b
-generalized skew derivations acting on multilinear polynomials in prime rings”, Communications in Algebra, 2024, 1
Nripendu Bera, Basudeb Dhara, Sukhendu Kar, “A result concerning b-generalized skew derivations on multilinear polynomials in prime rings”, Communications in Algebra, 51:3 (2023), 887
Luisa Carini, Vincenzo De Filippis, Springer Proceedings in Mathematics & Statistics, 392, Algebra and Related Topics with Applications, 2022, 59
Basudeb Dhara, Sukhendu Kar, Swarup Kuila, “A Note on Generalized Derivations of Order 2 and Multilinear Polynomials in Prime Rings”, Acta Math Vietnam, 47:4 (2022), 755
Ashraf M., Pary S.A., Raza M.A., “M-Potent Commutators Involving Skew Derivations and Multilinear Polynomials”, Georgian Math. J., 28:4 (2021), 519–527
Argac N., De Filippis V., “Power-Central Values and Engel Conditions in Prime Rings With Generalized Skew Derivations”, Mediterr. J. Math., 18:3 (2021), 82
De Filippis V., “Product of Generalized Skew Derivations on Lie Ideals”, Commun. Algebr., 49:7 (2021), 2987–3009
Dhara B., De Filippis V., Bera M., “Vanishing Derivations on Some Subsets in Prime Rings Involving Generalized Derivations”, Bull. Malays. Math. Sci. Soc., 44:4 (2021), 2693–2714
Dhara B., Bera N., Kar S., Fahid B., “Generalized Derivations and Generalization of Co-Commuting Maps in Prime Rings”, Taiwan. J. Math., 25:1 (2021), 65–88
Dhara B., “Generalized Derivations Vanishing on Co-Commutator Identities in Prime Rings”, Filomat, 35:6 (2021), 1785–1801
Tiwari Sh.K., Singh S.K., “a Note on Generalized Derivations With Multilinear Polynomials in Prime Rings”, Commun. Algebr., 48:4 (2020), 1770–1788
Tiwari S.K., “Identities With Generalized Derivations and Multilinear Polynomials”, Bull. Iran Math. Soc., 46:2 (2020), 425–440
Ashraf M., De Filippis V., Pary S.A., Tiwari Sh.K., “Derivations Vanishing on Commutator Identity Involving Generalized Derivation on Multilinear Polynomials in Prime Rings”, Commun. Algebr., 47:2 (2019), 800–813
Eroglu M.P., “Generalizations of Some Results on Generalized Polynomial Identities”, Commun. Fac. Sci. Univ. Ank.-Ser, A1 Math. Stat, 68:2 (2019), 2258–2263
Das P., Dhara B., Kar S., “Generalized Derivations With Centralizing Conditions in Prime Rings”, Commun. Korean Math. Soc., 34:1 (2019), 83–93
Eroglu M.P., “Generalized Skew Derivations With Centralizer Conditions on Multilinear Polynomials”, Beitr. Algebr. Geom., 59:1 (2018), 61–76
De Filippis V., Wei F., “Centralizers of X-Generalized Skew Derivations on Multilinear Polynomials in Prime Rings”, Commun. Math. Stat., 6:1 (2018), 49–71