Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2012, Volume 53, Number 6, Pages 1245–1262 (Mi smj2379)  

This article is cited in 6 scientific papers (total in 6 papers)

Errors, condition numbers, and guaranteed accuracy of higher-dimensional spherical cubatures

V. L. Vaskevichab

a Novosibirsk State University, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (355 kB) Citations (6)
References:
Abstract: We give upper bounds for the deviation of the norm of a perturbed error functional from the norm of the original error of a higher-dimensional spherical cubature formula. The deviation arises as a result of the combined influence on the computation of small variations of the weights of the cubature formula and rounding for the subsequent calculation of the cubature sum in the given standards of approximation to real numbers. We estimate the practical error of the cubature formula for its action on an arbitrary function in the unit ball of the normed space of integrands. The resulting estimates are applied to studying the practical error of spherical cubature formulas in the case of integrands in Sobolev-type spaces on the higher-dimensional unit sphere. We represent the norm of the error functional in the dual space of the Sobolev class as a positive definite quadratic form in the weights of the cubature formula. We estimate the practical error for spherical cubature formulas, each of which is constructed as the direct product of Gauss's quadrature formula along the meridian of the sphere and of the rectangle quadrature formula along the equator. The weights of this direct product with $2m^2$ nodes are positive. The formula itself is exact at all spherical harmonics up to order $2m-1$.
Keywords: spherical cubature formula, error functional, Sobolev space on a higher-dimensional sphere, embedding constants and functions, practical error, guaranteed accuracy.
Received: 27.01.2012
English version:
Siberian Mathematical Journal, 2012, Volume 53, Issue 6, Pages 996–1010
DOI: https://doi.org/10.1134/S0037446612060043
Bibliographic databases:
Document Type: Article
UDC: 517.518.23+517.518.83+519.651
Language: Russian
Citation: V. L. Vaskevich, “Errors, condition numbers, and guaranteed accuracy of higher-dimensional spherical cubatures”, Sibirsk. Mat. Zh., 53:6 (2012), 1245–1262; Siberian Math. J., 53:6 (2012), 996–1010
Citation in format AMSBIB
\Bibitem{Vas12}
\by V.~L.~Vaskevich
\paper Errors, condition numbers, and guaranteed accuracy of higher-dimensional spherical cubatures
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 6
\pages 1245--1262
\mathnet{http://mi.mathnet.ru/smj2379}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3074437}
\elib{https://elibrary.ru/item.asp?id=18838175}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 6
\pages 996--1010
\crossref{https://doi.org/10.1134/S0037446612060043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312906500004}
\elib{https://elibrary.ru/item.asp?id=20482543}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871708758}
Linking options:
  • https://www.mathnet.ru/eng/smj2379
  • https://www.mathnet.ru/eng/smj/v53/i6/p1245
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:295
    Full-text PDF :122
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024