Abstract:
We consider one of the problems of the theory of flexible polyhedra – the problem about the number of the parameters that must be defined additionally to the edge lengths for a polyhedron of a given combinatorial type in order to exclude its possible bendings. We give a description for the combinatorial structure of polyhedra of spherical type for which this number is equal to 1.
Citation:
I. G. Maksimov, “Description of the combinatorial structure of algorithmically 1-parametric polyhedra of spherical type”, Sibirsk. Mat. Zh., 53:4 (2012), 892–910; Siberian Math. J., 53:4 (2012), 718–731
\Bibitem{Mak12}
\by I.~G.~Maksimov
\paper Description of the combinatorial structure of algorithmically $1$-parametric polyhedra of spherical type
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 4
\pages 892--910
\mathnet{http://mi.mathnet.ru/smj2371}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3013534}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 4
\pages 718--731
\crossref{https://doi.org/10.1134/S0037446612040131}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000307983400013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865454697}
Linking options:
https://www.mathnet.ru/eng/smj2371
https://www.mathnet.ru/eng/smj/v53/i4/p892
This publication is cited in the following 1 articles:
V. A. Alexandrov, “The set of nondegenerate flexible polyhedra of a prescribed combinatorial structure is not always algebraic”, Siberian Math. J., 56:4 (2015), 569–574