Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2012, Volume 53, Number 4, Pages 822–838 (Mi smj2367)  

This article is cited in 4 scientific papers (total in 4 papers)

Martindale rings and HH-module algebras with invariant characteristic polynomials

M. S. Eryashkin

N. G. Chebotarev Research Institute of Mathematics and Mechanics, Kazan State University, Kazan
Full-text PDF (381 kB) Citations (4)
References:
Abstract: Under study is the category A of the possibly noncommutative H-module algebras that are mapped homomorphically onto commutative algebras. The H-equivariant Martindale ring of quotients QH(A) is shown to be a finite-dimensional Frobenius algebra over the subfield of invariant elements QH(A)H and also the classical ring of quotients for A. We introduce a full subcategory ˜A of A such that the algebras in ˜A are integral over its subalgebras of invariants and construct a functor A˜A, which is left adjoined to the inclusion ˜AA.
Keywords: Hopf algebras, invariant theory, Martindale ring of quotients.
Received: 15.07.2011
English version:
Siberian Mathematical Journal, 2012, Volume 53, Issue 4, Pages 659–671
DOI: https://doi.org/10.1134/S003744661204009X
Bibliographic databases:
Document Type: Article
UDC: 512.667.7
Language: Russian
Citation: M. S. Eryashkin, “Martindale rings and H-module algebras with invariant characteristic polynomials”, Sibirsk. Mat. Zh., 53:4 (2012), 822–838; Siberian Math. J., 53:4 (2012), 659–671
Citation in format AMSBIB
\Bibitem{Ery12}
\by M.~S.~Eryashkin
\paper Martindale rings and $H$-module algebras with invariant characteristic polynomials
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 4
\pages 822--838
\mathnet{http://mi.mathnet.ru/smj2367}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3013530}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 4
\pages 659--671
\crossref{https://doi.org/10.1134/S003744661204009X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000307983400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865480165}
Linking options:
  • https://www.mathnet.ru/eng/smj2367
  • https://www.mathnet.ru/eng/smj/v53/i4/p822
  • This publication is cited in the following 4 articles:
    1. S. M. Skryabin, “Subrings of invariants for actions of finite-dimensional Hopf algebras”, J. Math. Sci. (N. Y.), 256:2 (2021), 160–198  mathnet  crossref  mathscinet
    2. M. S. Eryashkin, “Invariants and rings of quotients of H-semiprime H-module algebra satisfying a polynomial identity”, Russian Math. (Iz. VUZ), 60:5 (2016), 18–34  mathnet  crossref  isi
    3. M. S. Eryashkin, “Invariants of the action of a semisimple Hopf algebra on PI-algebra”, Russian Math. (Iz. VUZ), 60:8 (2016), 17–28  mathnet  crossref  isi
    4. Etingof P., “Galois Bimodules and Integrality of Pi Comodule Algebras Over Invariants”, J. Noncommutative Geom., 9:2 (2015), 567–602  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:308
    Full-text PDF :81
    References:66
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025