|
Sibirskii Matematicheskii Zhurnal, 2012, Volume 53, Number 3, Pages 558–565
(Mi smj2345)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
On finite $X$-decomposable groups for $X=\{1,2,4\}$
X. Guoa, J. Lia, K. P. Shumb a Department of Mathematics, Shanghai University, Shanghai, P. R. China
b Institute of Mathematics, Yunnan University, Kunming, P. R. China
Abstract:
A normal subgroup $N$ of a finite group $G$ is called an $n$-decomposable subgroup if $N$ is a union of $n$ distinct conjugacy classes of $G$. Each finite nonabelian nonperfect group is proved to be isomorphic to $Q_{12}$, or $Z_2\times A_4$, or $G=\langle a,b,c\mid a^{11}=b^5=c^2=1,\ b^{-1}ab=a^4,\ c^{-1}ac=a^{-1},\ c^{-1}bc=b^{-1}\rangle$ if every nontrivial normal subgroup is $2$- or $4$-decomposable.
Keywords:
$n$-decomposable, $X$-decomposable, $G$-conjugacy class.
Received: 22.02.2011
Citation:
X. Guo, J. Li, K. P. Shum, “On finite $X$-decomposable groups for $X=\{1,2,4\}$”, Sibirsk. Mat. Zh., 53:3 (2012), 558–565; Siberian Math. J., 53:3 (2012), 444–449
Linking options:
https://www.mathnet.ru/eng/smj2345 https://www.mathnet.ru/eng/smj/v53/i3/p558
|
|