Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2012, Volume 53, Number 5, Pages 991–1000 (Mi smj2324)  

This article is cited in 1 scientific paper (total in 1 paper)

On the groups of unitriangular automorphisms of relatively free groups

S. Yu. Erofeev, V. A. Roman'kov

Omsk State University, Omsk
Full-text PDF (319 kB) Citations (1)
References:
Abstract: We describe the structure of the group $U_n$ of unitriangular automorphisms of the relatively free group $G_n$ of finite rank $n$ in an arbitrary variety $\mathscr C$ of groups. This enables us to introduce an effective concept of normal form for the elements and present $U_n$ by using generators and defining relations. The cases $n=1,2$ are obvious: $U_1$ is trivial, and $U_2$ is cyclic. For $n\ge3$ we prove the following: If $G_{n-1}$ is a nilpotent group then so is $U_n$. If $G_{n-1}$ is a nilpotent-by-finite group then $U_n$ admits a faithful matrix representation. But if the variety $\mathscr C$ is different from the variety of all groups and $G_{n-1}$ is not nilpotent-by-finite then $U_n$ admits no faithful matrix representation over any field. Thus, we exhaustively classify linearity for the groups of unitriangular automorphisms of finite rank relatively free groups in proper varieties of groups, which complements the results of Olshanskii on the linearity of the full automorphism groups $\mathrm{Aut}G_n$. Moreover, we introduce the concept of length of an automorphism of an arbitrary relatively free group $G_n$ and estimate the length of the inverse automorphism in the case that it is unitriangular.
Keywords: relatively free group, unitriangular automorphism, matrix representation, length of an automorphism.
Received: 16.09.2011
English version:
Siberian Mathematical Journal, 2012, Volume 53, Issue 5, Pages 792–799
DOI: https://doi.org/10.1134/S0037446612050047
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: S. Yu. Erofeev, V. A. Roman'kov, “On the groups of unitriangular automorphisms of relatively free groups”, Sibirsk. Mat. Zh., 53:5 (2012), 991–1000; Siberian Math. J., 53:5 (2012), 792–799
Citation in format AMSBIB
\Bibitem{EroRom12}
\by S.~Yu.~Erofeev, V.~A.~Roman'kov
\paper On the groups of unitriangular automorphisms of relatively free groups
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 5
\pages 991--1000
\mathnet{http://mi.mathnet.ru/smj2324}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3057681}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 5
\pages 792--799
\crossref{https://doi.org/10.1134/S0037446612050047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310374900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868151544}
Linking options:
  • https://www.mathnet.ru/eng/smj2324
  • https://www.mathnet.ru/eng/smj/v53/i5/p991
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:360
    Full-text PDF :100
    References:79
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024