Abstract:
The main theorem in this article shows that a group of odd order which admits the alternating group of degree $5$ with an element of order $5$ acting fixed point freely is nilpotent of class at most $2$. For all odd primes $r$, other than $5$, we give a class $2$$r$-group which admits the alternating group of degree $5$ in such a way. This theorem corrects an earlier result which asserts that such class $2$ groups do not exist. The result allows us to state a theorem giving precise information about groups in which the centralizer of every element of order $5$ is a $5$-group.
Citation:
S. Astill, Ch. Parker, R. Waldecker, “A note on groups in which the centralizer of every element of order $5$ is a $5$-group”, Sibirsk. Mat. Zh., 53:5 (2012), 967–977; Siberian Math. J., 53:5 (2012), 772–780
\Bibitem{AstParWal12}
\by S.~Astill, Ch.~Parker, R.~Waldecker
\paper A note on groups in which the centralizer of every element of order~$5$ is a~$5$-group
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 5
\pages 967--977
\mathnet{http://mi.mathnet.ru/smj2322}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3057679}
\elib{https://elibrary.ru/item.asp?id=17897045}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 5
\pages 772--780
\crossref{https://doi.org/10.1134/S0037446612050023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310374900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868159116}
Linking options:
https://www.mathnet.ru/eng/smj2322
https://www.mathnet.ru/eng/smj/v53/i5/p967
This publication is cited in the following 7 articles:
J. Guo, W. Guo, A. S. Kondrat'ev, M. S. Nirova, “Finite Groups Without Elements of Order 10: The Case of Solvable or Almost Simple Groups”, Sib Math J, 65:4 (2024), 764
Tsz. Go, V. Go, A. S. Kondratev, M. S. Nirova, “Konechnye gruppy bez elementov poryadka desyat. Sluchai razreshimykh ili pochti prostykh grupp”, Sib. matem. zhurn., 65:4 (2024), 636–644
A. S. Kondratev, “Konechnye 4-primarnye gruppy s nesvyaznym grafom Gryunberga–Kegelya, soderzhaschim treugolnik”, Algebra i logika, 62:1 (2023), 76–92
A. S. Kondrat'ev, “Finite 4-Primary Groups with Disconnected Gruenberg–Kegel Graph Containing a Triangle”, Algebra Logic, 62:1 (2023), 54
Amin Saeidi, “Finite groups whose commuting conjugacy class graphs have isolated vertices”, Communications in Algebra, 51:2 (2023), 648
M. Costantini, E. Jabara, “On locally finite $\mathsf{Cpp}$-groups”, Isr. J. Math., 212:1 (2016), 123–137
I. V. Khramtsov, “O konechnykh neprostykh $4$-primarnykh gruppakh”, Sib. elektron. matem. izv., 11 (2014), 695–708