Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2012, Volume 53, Number 2, Pages 465–472 (Mi smj2319)  

This article is cited in 2 scientific papers (total in 2 papers)

Finite groups with $S$-supplemented $p$-subgroups

N. Yanga, W. Guoa, O. L. Shemetkovab

a Department of mathematics, University of Science and Technology of China, Hefei, P. R. China
b Plekhanov Russian State University of Economics, Moscow
Full-text PDF (297 kB) Citations (2)
References:
Abstract: Consider a finite group $G$. A subgroup is called $S$-quasinormal whenever it permutes with all Sylow subgroups of $G$. Denote by $B_{sG}$ the largest $S$-quasinormal subgroup of $G$ lying in $B$. A subgroup $B$ is called $S$-supplemented in $G$ whenever there is a subgroup $T$ with $G=BT$ and $B\cap T\le B_{sG}$. A subgroup $L$ of $G$ is called a quaternionic subgroup whenever $G$ has a section $A/B$ isomorphic to the order 8 quaternion group such that $L\le A$ and $L\cap B=1$. This article is devoted to proving the following theorem.
Theorem. Let $E$ be a normal subgroup of a group $G$ and let $p$ be a prime divisor of $|E|$ such that $(p-1,|E|)=1$. Take a Sylow $p$-subgroup $P$ of $E$. Suppose that either all maximal subgroups of $P$ lacking $p$-supersoluble supplement in $G$ or all order $p$ subgroups and quaternionic order 4 subgroups of $P$ lacking $p$-supersoluble supplement in $G$ are $S$-supplemented in $G$. Then $E$ is $p$-nilpotent and all its $G$-chief $p$-factors are cyclic.
Keywords: finite group, $S$-quasinormal subgroup, cyclic chief factor.
Received: 29.03.2011
English version:
Siberian Mathematical Journal, 2012, Volume 53, Issue 2, Pages 371–376
DOI: https://doi.org/10.1134/S003744661202019X
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: N. Yang, W. Guo, O. L. Shemetkova, “Finite groups with $S$-supplemented $p$-subgroups”, Sibirsk. Mat. Zh., 53:2 (2012), 465–472; Siberian Math. J., 53:2 (2012), 371–376
Citation in format AMSBIB
\Bibitem{YanGuoShe12}
\by N.~Yang, W.~Guo, O.~L.~Shemetkova
\paper Finite groups with $S$-supplemented $p$-subgroups
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 2
\pages 465--472
\mathnet{http://mi.mathnet.ru/smj2319}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2975949}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 2
\pages 371--376
\crossref{https://doi.org/10.1134/S003744661202019X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303357900019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860386295}
Linking options:
  • https://www.mathnet.ru/eng/smj2319
  • https://www.mathnet.ru/eng/smj/v53/i2/p465
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025