Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2012, Volume 53, Number 2, Pages 345–364 (Mi smj2310)  

This article is cited in 5 scientific papers (total in 5 papers)

Asymptotics of solutions to the spectral elasticity problem for a spatial body with a thin coupler

S. A. Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg
Full-text PDF (410 kB) Citations (5)
References:
Abstract: We construct asymptotics for the eigenvalues and vector eigenfunctions of the elasticity problem for an anisotropic body with a thin coupler (of diameter h) attached to its surface. In the spectrum we select two series of eigenvalues with stable asymptotics. The first series is formed by eigenvalues O(h2)O(h2) corresponding to the transverse oscillations of the rod with rigidly fixed ends, while the second is generated by the longitudinal oscillations and twisting of the rod, as well as eigenoscillations of the body without the coupler. We check the convergence theorem for the first series and derive the error estimates for both series.
Keywords: joint of a massive rod with a thin rod, spectrum of elastic body, asymptotics for eigenvalues.
Received: 05.02.2011
English version:
Siberian Mathematical Journal, 2012, Volume 53, Issue 2, Pages 274–290
DOI: https://doi.org/10.1134/S0037446612020103
Bibliographic databases:
Document Type: Article
UDC: 517.956.8+517.956.328+539.3(4)
Language: Russian
Citation: S. A. Nazarov, “Asymptotics of solutions to the spectral elasticity problem for a spatial body with a thin coupler”, Sibirsk. Mat. Zh., 53:2 (2012), 345–364; Siberian Math. J., 53:2 (2012), 274–290
Citation in format AMSBIB
\Bibitem{Naz12}
\by S.~A.~Nazarov
\paper Asymptotics of solutions to the spectral elasticity problem for a~spatial body with a~thin coupler
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 2
\pages 345--364
\mathnet{http://mi.mathnet.ru/smj2310}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2975940}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 2
\pages 274--290
\crossref{https://doi.org/10.1134/S0037446612020103}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303357900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860371544}
Linking options:
  • https://www.mathnet.ru/eng/smj2310
  • https://www.mathnet.ru/eng/smj/v53/i2/p345
  • This publication is cited in the following 5 articles:
    1. S. A. Nazarov, “Abnormal Transmission of Elastic Waves through a Thin Ligament Connecting Two Planar Isotropic Waveguides”, Mech. Solids, 57:8 (2022), 1908  crossref
    2. Chesnel L. Nazarov S.A. Taskinen J., “Surface Waves in a Channel With Thin Tunnels and Wells At the Bottom: Non-Reflecting Underwater Topography”, Asymptotic Anal., 118:1-2 (2020), 81–122  crossref  mathscinet  zmath  isi  scopus
    3. Yu. I. Dimitrienko, I. D. Dimitrienko, “Modeling of thin composite laminates with general anisotropy under harmonic vibrations by the asymptotic homogenization method”, Int. J. Multiscale Comput. Eng., 15:3 (2017), 219–237  crossref  isi  scopus
    4. F. L. Bakharev, S. A. Nazarov, “Gaps in the spectrum of a waveguide composed of domains with different limiting dimensions”, Siberian Math. J., 56:4 (2015), 575–592  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    5. Bunoiu R., Cardone G., Nazarov S.A., “Scalar Boundary Value Problems on Junctions of Thin Rods and Plates”, ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer., 48:5 (2014), 1495–1528  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:482
    Full-text PDF :113
    References:97
    First page:14
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025