Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2012, Volume 53, Number 1, Pages 38–58 (Mi smj2288)  

This article is cited in 5 scientific papers (total in 5 papers)

The Möbius midpoint condition as a test for quasiconformality and the quasimöbius property

V. V. Aseev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (375 kB) Citations (5)
References:
Abstract: The Möbius midpoint condition, introduced by Goldberg in 1974 as a criterion for the quasisymmetry of a mapping of the line onto itself and considered by Aseev and Kuzin in 1998 in the same role for the topological embeddings of the line into $\mathbb R^n$, yields no information on the quasiconformality or quasisymmetry of a topological embedding of $\mathbb R^k$ into $\mathbb R^n$ for $1<k\le n$. In this article we introduce a Möbius-invariant modification of the midpoint condition, which we call the “Möbius midpoint condition” $\mathrm{MMC}(f)\le H<1$. We prove that if this condition is fulfilled then every homeomorphism of domains in $\overline{\mathbb R^n}$ is $K(H)$-quasiconformal, while a topological embedding of the sphere $\overline{\mathbb R^k}$ into $\overline{\mathbb R^n}$ (for $1\le k\le n$) is $\omega_H$-quasimöbius. The quasiconformality coefficient of $K(H)$ and the distortion function $\omega_H$ depend only on $H$ and are expressed by explicit formulas showing that $K(H)\to1$ and $\omega_H\to\mathrm{id}$ as $H\to1/2$. Since $\mathrm{MMC}(f)=1/2$ is equivalent to the Möbius property of $f$, the resulting formulas yield the closeness of the mapping to a Möbius mapping for $H$ near $1/2$.
Keywords: quasiconformality, quasiconformal mapping, quasisymmetry, quasisymmetric embedding, quasimöbius property, quasimöbius embedding, Möbius midpoint condition, bounded turning, absolute cross-ratio, Möbius-invariant characteristic, distortion function.
Received: 24.12.2010
English version:
Siberian Mathematical Journal, 2012, Volume 53, Issue 1, Pages 29–46
DOI: https://doi.org/10.1134/S003744661201003X
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: V. V. Aseev, “The Möbius midpoint condition as a test for quasiconformality and the quasimöbius property”, Sibirsk. Mat. Zh., 53:1 (2012), 38–58; Siberian Math. J., 53:1 (2012), 29–46
Citation in format AMSBIB
\Bibitem{Ase12}
\by V.~V.~Aseev
\paper The M\"obius midpoint condition as a~test for quasiconformality and the quasimöbius property
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 1
\pages 38--58
\mathnet{http://mi.mathnet.ru/smj2288}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962188}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 1
\pages 29--46
\crossref{https://doi.org/10.1134/S003744661201003X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303357700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857519181}
Linking options:
  • https://www.mathnet.ru/eng/smj2288
  • https://www.mathnet.ru/eng/smj/v53/i1/p38
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024