|
Sibirskii Matematicheskii Zhurnal, 2011, Volume 52, Number 6, Pages 1414–1427
(Mi smj2284)
|
|
|
|
This article is cited in 15 scientific papers (total in 15 papers)
Exact constants in Jackson-type inequalities and exact values of the widths of some classes of functions in $L_2$
M. Sh. Shabozova, G. A. Yusupovb a Institute of Mathematics, Academy of Sciences of Republic of Tajikistan, Dushanbe, Tajikistan
b Tajik National University, Dushanbe, Tajikistan
Abstract:
We find the exact values of the $n$-widths for the classes of periodic differentiable functions in $L_2[0,2\pi]$, satisfying the constraint
$$
\int_0^ht\widetilde\Omega_m^{1/m}(f^{(r)};t)\,dt\le\Phi(h),
$$
where $h>0$, $m\in\mathbb N$, $r\in\mathbb Z_+$, $\widetilde\Omega_m^{1/m}(f^{(r)};t)$ is the generalized $m$th order continuity modulus of the derivative $f^{(r)}\in L_2[0,2\pi]$, while $\Phi(t)$ is an arbitrary increasing function such that $\Phi(0)=0$.
Keywords:
space of square integrable functions, best approximation, extremal characteristic, generalized continuity modulus, width.
Received: 11.01.2011 Revised: 10.05.2011
Citation:
M. Sh. Shabozov, G. A. Yusupov, “Exact constants in Jackson-type inequalities and exact values of the widths of some classes of functions in $L_2$”, Sibirsk. Mat. Zh., 52:6 (2011), 1414–1427; Siberian Math. J., 52:6 (2011), 1124–1136
Linking options:
https://www.mathnet.ru/eng/smj2284 https://www.mathnet.ru/eng/smj/v52/i6/p1414
|
Statistics & downloads: |
Abstract page: | 331 | Full-text PDF : | 138 | References: | 62 | First page: | 6 |
|