|
Sibirskii Matematicheskii Zhurnal, 2011, Volume 52, Number 6, Pages 1389–1393
(Mi smj2282)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
A condition for asymptotic finite-dimensionality of an operator semigroup
K. V. Storozhukab a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University, Novosibirsk
Abstract:
Let $X$ be a Banach space and let $T\colon X\to X$ be a power bounded linear operator. Put $X_0=\{x\in X\mid T^nx\to0\}$. Assume given a compact set $K\subset X$ such that $\liminf_{n\to\infty}\rho\{T^nx,K\}\le\eta<1$ for every $x\in X$, $\|x\|\le1$. If $\eta<\frac12$, then $\operatorname{codim}X_0<\infty$. This is true in $X$ reflexive for $\eta\in[\frac12,1)$, but fails in the general case.
Keywords:
asymptotically finite-dimensional operator semigroup.
Received: 15.11.2010
Citation:
K. V. Storozhuk, “A condition for asymptotic finite-dimensionality of an operator semigroup”, Sibirsk. Mat. Zh., 52:6 (2011), 1389–1393; Siberian Math. J., 52:6 (2011), 1104–1107
Linking options:
https://www.mathnet.ru/eng/smj2282 https://www.mathnet.ru/eng/smj/v52/i6/p1389
|
|