Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2011, Volume 52, Number 6, Pages 1234–1252 (Mi smj2270)  

This article is cited in 7 scientific papers (total in 7 papers)

An unsaturated numerical method for the exterior axisymmetric Neumann problem for Laplace's equation

V. N. Belykh

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (379 kB) Citations (7)
References:
Abstract: Basing on the fundamental ideas of Babenko, we construct a fundamentally new, unsaturated, numerical method for solving the axially symmetric exterior Neumann problem for Laplace's equation. The distinctive feature of this method is the absence of the principal error term enabling us to automatically adjust to every class of smoothness of solutions natural in the problem.
This result is fundamental since in the case of $C^\infty$-smooth solutions the method, up to a slowly increasing factor, realizes an absolutely unimprovable exponential error estimate. The reason is the asymptotics of the Aleksandroff widths of the compact set of $C^\infty$-smooth functions containing the exact solution to the problem. This asymptotics also has the form of an exponential function decaying to zero.
Keywords: Laplace equation, Neumann problem, unsaturated numerical method, exponential convergence.
Received: 08.11.2010
English version:
Siberian Mathematical Journal, 2011, Volume 52, Issue 6, Pages 980–994
DOI: https://doi.org/10.1134/S0037446611060036
Bibliographic databases:
Document Type: Article
UDC: 519.644+532.582.33
Language: Russian
Citation: V. N. Belykh, “An unsaturated numerical method for the exterior axisymmetric Neumann problem for Laplace's equation”, Sibirsk. Mat. Zh., 52:6 (2011), 1234–1252; Siberian Math. J., 52:6 (2011), 980–994
Citation in format AMSBIB
\Bibitem{Bel11}
\by V.~N.~Belykh
\paper An unsaturated numerical method for the exterior axisymmetric Neumann problem for Laplace's equation
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 6
\pages 1234--1252
\mathnet{http://mi.mathnet.ru/smj2270}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2961751}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 6
\pages 980--994
\crossref{https://doi.org/10.1134/S0037446611060036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298650800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855176004}
Linking options:
  • https://www.mathnet.ru/eng/smj2270
  • https://www.mathnet.ru/eng/smj/v52/i6/p1234
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:474
    Full-text PDF :120
    References:74
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024