Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2011, Volume 52, Number 5, Pages 1025–1038 (Mi smj2255)  

This article is cited in 2 scientific papers (total in 2 papers)

Multilinear polynomials and cocentralizing conditions in prime rings

V. De Filippis, F. Rania

University of Messina, Messina, Italy
Full-text PDF (328 kB) Citations (2)
References:
Abstract: Let $R$ be a noncommutative prime ring of characteristic different from 2, let $Z(R)$ be its center, let $U$ be the Utumi quotient ring of $R$, let $C$ be the extended centroid of $R$, and let $f(x_1,\dots,x_n)$ be a noncentral multilinear polynomial over $C$ in $n$ noncommuting variables. Denote by $f(R)$ the set of all evaluations of $f(x_1,\dots,x_n)$ on $R$. If $F$ and $G$ are generalized derivations of $R$ such that $[[F(x),x],[G(y),y]]\in Z(R)$ for any $x,y\in f(R)$, then one of the following holds:
(1) there exists $\alpha\in C$ such that $F(x)=\alpha x$ for all $x\in R$;
(2) there exists $\beta\in C$ such that $G(x)=\beta x$ for all $x\in R$;
(3) $f(x_1,\dots,x_n)^2$ is central valued on $R$ and either there exist $a\in U$ and $\alpha\in C$ such that $F(x)=ax+xa+\alpha x$ for all $x\in R$ or there exist $c\in U$ anf $\beta\in C$ such that $G(x)=cx+xc+\beta x$ for all $x\in R$;
(4) $R$ satisfies the standard identity $s_4(x_1,\dots,x_4)$ and either there exist $a\in U$ and $\alpha\in C$ such that $F(x)=ax+xa+\alpha x$ for all $x\in R$ or there exist $c\in U$ and $\beta\in C$ such that $G(x)=cx+xc+\beta x$ for all $x\in R$.
Keywords: prime ring, differential identity, generalized derivations.
Received: 13.04.2010
English version:
Siberian Mathematical Journal, 2011, Volume 52, Issue 5, Pages 813–823
DOI: https://doi.org/10.1134/S0037446611050065
Bibliographic databases:
Document Type: Article
UDC: 512.552
Language: Russian
Citation: V. De Filippis, F. Rania, “Multilinear polynomials and cocentralizing conditions in prime rings”, Sibirsk. Mat. Zh., 52:5 (2011), 1025–1038; Siberian Math. J., 52:5 (2011), 813–823
Citation in format AMSBIB
\Bibitem{De Ran11}
\by V.~De Filippis, F.~Rania
\paper Multilinear polynomials and cocentralizing conditions in prime rings
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 5
\pages 1025--1038
\mathnet{http://mi.mathnet.ru/smj2255}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2908124}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 5
\pages 813--823
\crossref{https://doi.org/10.1134/S0037446611050065}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298650500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80155142463}
Linking options:
  • https://www.mathnet.ru/eng/smj2255
  • https://www.mathnet.ru/eng/smj/v52/i5/p1025
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :68
    References:51
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024