Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2011, Volume 52, Number 5, Pages 977–992 (Mi smj2251)  

This article is cited in 1 scientific paper (total in 1 paper)

A four-point criterion for the Möbius property of a homeomorphism of plane domains

V. V. Aseeva, T. A. Kergilovab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Gorno-Altaĭsk State University, Gorno-Altaĭsk, Russia
Full-text PDF (377 kB) Citations (1)
References:
Abstract: An ordered quadruple of pairwise distinct points $T=\{z_1,z_2,z_3,z_4\}\subset\mathbf C$ is called regular whenever $z_2$ and $z_4$ lie at the opposite sides of the line through $z_1$ and $z_3$. Consider $\Phi(T)=\angle z_1z_2z_3+\angle z_1z_4z_3$ (the angles are undirected) as some geometric characteristic of a regular tetrad. We prove the following theorem: For every fixed $\alpha\in(0,2\pi)$ the Möbius property of a homeomorphism $f\colon D\to D^*$ of domains in $\mathbf C$ is equivalent to the requirement that each regular tetrad $T\subset D$ with $\Phi(T)=\alpha$ whose image $fT$ is also a regular tetrad satisfies $\Phi(fT)=\alpha$. In 1994 Haruki and Rassias established this criterion for the Möbius property only in the class of univalent analytic functions $f(z)$.
Keywords: Möbius transformation, geometric criterion for the Möbius property, local convexity, nonconvexity point, linearity point.
Received: 01.09.2010
English version:
Siberian Mathematical Journal, 2011, Volume 52, Issue 5, Pages 776–787
DOI: https://doi.org/10.1134/S0037446611050028
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: V. V. Aseev, T. A. Kergilova, “A four-point criterion for the Möbius property of a homeomorphism of plane domains”, Sibirsk. Mat. Zh., 52:5 (2011), 977–992; Siberian Math. J., 52:5 (2011), 776–787
Citation in format AMSBIB
\Bibitem{AseKer11}
\by V.~V.~Aseev, T.~A.~Kergilova
\paper A four-point criterion for the M\"obius property of a~homeomorphism of plane domains
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 5
\pages 977--992
\mathnet{http://mi.mathnet.ru/smj2251}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2908120}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 5
\pages 776--787
\crossref{https://doi.org/10.1134/S0037446611050028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298650500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80155151871}
Linking options:
  • https://www.mathnet.ru/eng/smj2251
  • https://www.mathnet.ru/eng/smj/v52/i5/p977
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024