Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2011, Volume 52, Number 3, Pages 655–664 (Mi smj2227)  

This article is cited in 15 scientific papers (total in 15 papers)

On $n$-commuting and $n$-skew-commuting maps with generalized derivations in prime and semiprime rings

N. ur Rehmana, V. De Filippisb

a Department of Mathematics, Aligarh Muslim University, Aligarh, India
b DI.S.I.A., Faculty of Engineering, University of Messina, Messina, Italy
References:
Abstract: Let $R$ be a ring with center $Z(R)$, let $n$ be a fixed positive integer, and let $I$ be a nonzero ideal of $R$. A mapping $h\colon R\to R$ is called $n$-centralizing ($n$-commuting) on a subset $S$ of $R$ if $[h(x),x^n]\in Z(R)$ ($[h(x),x^n]=0$ respectively) for all $x\in S$. The following are proved:
(1) if there exist generalized derivations $F$ and $G$ on an $n!$-torsion free semiprime ring $R$ such that $F^2+G$ is $n$-commuting on $R$, then $R$ contains a nonzero central ideal;
(2) if there exist generalized derivations $F$ and $G$ on an $n!$-torsion free prime ring $R$ such that $F^2+G$ is $n$-skew-commuting on $I$, then $R$ is commutative.
Keywords: prime ring, semiprime ring, generalized derivation.
Received: 01.04.2010
English version:
Siberian Mathematical Journal, 2011, Volume 52, Issue 3, Pages 516–523
DOI: https://doi.org/10.1134/S0037446611030141
Bibliographic databases:
Document Type: Article
UDC: 512.552
Language: Russian
Citation: N. ur Rehman, V. De Filippis, “On $n$-commuting and $n$-skew-commuting maps with generalized derivations in prime and semiprime rings”, Sibirsk. Mat. Zh., 52:3 (2011), 655–664; Siberian Math. J., 52:3 (2011), 516–523
Citation in format AMSBIB
\Bibitem{RehDe 11}
\by N.~ur Rehman, V.~De Filippis
\paper On $n$-commuting and $n$-skew-commuting maps with generalized derivations in prime and semiprime rings
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 3
\pages 655--664
\mathnet{http://mi.mathnet.ru/smj2227}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2858650}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 3
\pages 516--523
\crossref{https://doi.org/10.1134/S0037446611030141}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298648800014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959715475}
Linking options:
  • https://www.mathnet.ru/eng/smj2227
  • https://www.mathnet.ru/eng/smj/v52/i3/p655
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:288
    Full-text PDF :83
    References:55
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024