Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2011, Volume 52, Number 2, Pages 469–475 (Mi smj2212)  

Identities of the soluble product of abelian groups

E. I. Timoshenko

Novosibirsk State Technical University, Novosibirsk, Russia
References:
Abstract: We consider the product $G$ of abelian groups in the variety $\mathfrak A^n$ of soluble groups of length at most $n$. Provided that the abelian factors are decomposable into direct products of cyclic groups, we find necessary and sufficient conditions for $G$ to generate the variety $\mathfrak A^n$.
Keywords: soluble product, variety of groups, abelian group, soluble group.
Received: 03.06.2010
English version:
Siberian Mathematical Journal, 2011, Volume 52, Issue 2, Pages 372–376
DOI: https://doi.org/10.1134/S0037446611020212
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: E. I. Timoshenko, “Identities of the soluble product of abelian groups”, Sibirsk. Mat. Zh., 52:2 (2011), 469–475; Siberian Math. J., 52:2 (2011), 372–376
Citation in format AMSBIB
\Bibitem{Tim11}
\by E.~I.~Timoshenko
\paper Identities of the soluble product of abelian groups
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 2
\pages 469--475
\mathnet{http://mi.mathnet.ru/smj2212}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841644}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 2
\pages 372--376
\crossref{https://doi.org/10.1134/S0037446611020212}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000291987200021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955786146}
Linking options:
  • https://www.mathnet.ru/eng/smj2212
  • https://www.mathnet.ru/eng/smj/v52/i2/p469
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025