Abstract:
Let A denote the set of normalized analytic functions f(z)=z+∑∞k=2akzk in the unit disk |z|<1, sn(z) represent the nnth partial sum of f(z). Our first objective of this note is to obtain a bound for |sn(z)f(z)−1| when f∈A is univalent in D. Let U denote the set of all f∈A in D satisfying the condition
|f′(z)(zf(z))2−1|<1
for |z|<1. In case f″(0)=0, we find that all corresponding sections sn of f∈U are in U in the disk |z|<1−3logn−log(logn)n for n⩾. We also show that \operatorname{Re}(f(z)/s_n(z))>1/2 in the disk |z|<\sqrt{\sqrt5-2}. Finally, we establish a necessary coefficient condition for functions in \mathscr U and the related radius problem for an associated subclass of \mathscr U. In result, we see that if f\in\mathscr U thenfor n\ge3 we have
\Big|\frac{f(z)}{s_n(z)}-\frac43\Big|<\frac23\quad\text{for}\quad|z|<r_n:=1-\frac{2\log n}n.
Keywords:
coefficient inequality, partial sums, radius of univalence, analytic, univalent, and starlike functions.
Citation:
M. Obradović, S. Ponnusamy, “Partial sums and the radius problem for some class of conformal mappings”, Sibirsk. Mat. Zh., 52:2 (2011), 371–383; Siberian Math. J., 52:2 (2011), 291–302
\Bibitem{ObrPon11}
\by M.~Obradovi{\'c}, S.~Ponnusamy
\paper Partial sums and the radius problem for some class of conformal mappings
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 2
\pages 371--383
\mathnet{http://mi.mathnet.ru/smj2203}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841555}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 2
\pages 291--302
\crossref{https://doi.org/10.1134/S0037446611020121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000291987200012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955760306}
Linking options:
https://www.mathnet.ru/eng/smj2203
https://www.mathnet.ru/eng/smj/v52/i2/p371
This publication is cited in the following 8 articles:
Pooja Yadav, S. Sivaprasad Kumar, “Partial sums for a generalised class of analytic functions”, J Anal, 2024
Anbareeswaran Sairam Kaliraj, “On De la Vallée Poussin means for harmonic mappings”, Monatsh Math, 198:3 (2022), 547
S. Agrawal, S. K. Sahoo, “Radius of convexity of partial sums of odd functions in the close-to-convex family”, Filomat, 31:11, SI (2017), 3519–3529
L. Li, S. Ponnusamy, “Injectivity of sections of convex harmonic mappings and convolution theorems”, Czech. Math. J., 66:2 (2016), 331–350
Milutin Obradović, Saminathan Ponnusamy, Karl-Joachim Wirths, “On relations between the classes {\mathcal {S}} S and {\mathcal {U}} U”, J Anal, 24:1 (2016), 83
Bharanedhar S.V. Ponnusamy S., “Uniform Close-To-Convexity Radius of Sections of Functions in the Close-To-Convex Family”, J. Ramanujan Math. Soc., 29:3 (2014), 243–251
Obradovic M., Ponnusamy S., “Starlikeness of Sections of Univalent Functions”, Rocky Mt. J. Math., 44:3 (2014), 1003–1014
A. Vasudevarao, H. Yanagihara, “On the Growth of Analytic Functions in the Class {\mathcal {U}}(\lambda ) U ( λ )”, Comput. Methods Funct. Theory, 13:4 (2013), 613