Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2011, Volume 52, Number 2, Pages 371–383 (Mi smj2203)  

This article is cited in 8 scientific papers (total in 8 papers)

Partial sums and the radius problem for some class of conformal mappings

M. Obradovića, S. Ponnusamyb

a Department of Mathematics, Faculty of Civil Engineering, Belgrade, Serbia
b Department of Mathematics, Indian Institute of Technology Madras, Chennai, India
Full-text PDF (339 kB) Citations (8)
References:
Abstract: Let $\mathscr A$ denote the set of normalized analytic functions $f(z)=z+\sum^\infty_{k=2}a_kz^k$ in the unit disk $|z|<1$, $s_n(z)$ represent the $n$nth partial sum of $f(z)$. Our first objective of this note is to obtain a bound for $|\frac{s_n(z)}{f(z)}-1|$ when $f\in\mathscr A$ is univalent in $\mathbb D$. Let $\mathscr U$ denote the set of all $f\in\mathscr A$ in $\mathbb D$ satisfying the condition
$$ \Big|f'(z)\Bigl(\frac z{f(z)}\Bigr)^2-1\Big|<1 $$
for $|z|<1$. In case $f''(0)=0$, we find that all corresponding sections $s_n$ of $f\in\mathscr U$ are in $\mathscr U$ in the disk $|z|<1-\frac{3\log n-\log(\log n)}n$ for $n\ge5$. We also show that $\operatorname{Re}(f(z)/s_n(z))>1/2$ in the disk $|z|<\sqrt{\sqrt5-2}$. Finally, we establish a necessary coefficient condition for functions in $\mathscr U$ and the related radius problem for an associated subclass of $\mathscr U$. In result, we see that if $f\in\mathscr U$ thenfor $n\ge3$ we have
$$ \Big|\frac{f(z)}{s_n(z)}-\frac43\Big|<\frac23\quad\text{for}\quad|z|<r_n:=1-\frac{2\log n}n. $$
Keywords: coefficient inequality, partial sums, radius of univalence, analytic, univalent, and starlike functions.
Received: 08.10.2009
Revised: 03.07.2010
English version:
Siberian Mathematical Journal, 2011, Volume 52, Issue 2, Pages 291–302
DOI: https://doi.org/10.1134/S0037446611020121
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: M. Obradović, S. Ponnusamy, “Partial sums and the radius problem for some class of conformal mappings”, Sibirsk. Mat. Zh., 52:2 (2011), 371–383; Siberian Math. J., 52:2 (2011), 291–302
Citation in format AMSBIB
\Bibitem{ObrPon11}
\by M.~Obradovi{\'c}, S.~Ponnusamy
\paper Partial sums and the radius problem for some class of conformal mappings
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 2
\pages 371--383
\mathnet{http://mi.mathnet.ru/smj2203}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841555}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 2
\pages 291--302
\crossref{https://doi.org/10.1134/S0037446611020121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000291987200012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955760306}
Linking options:
  • https://www.mathnet.ru/eng/smj2203
  • https://www.mathnet.ru/eng/smj/v52/i2/p371
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:299
    Full-text PDF :70
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024