Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 6, Pages 1282–1297 (Mi smj2161)  

This article is cited in 5 scientific papers (total in 6 papers)

Friedrichs systems for the three-dimensional wave equation

V. M. Gordienkoab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University, Mechanics and Mathematics Department, Novosibirsk
Full-text PDF (322 kB) Citations (6)
References:
Abstract: The three-dimensional wave equation is reduced to a Friedrichs symmetric hyperbolic system. We describe all these reductions and find those of them that preserve the velocity of propagation of perturbations. We also exhibit transformations of a Friedrichs system under the Lorentz transformation of coordinates. The construction of the reduction of the wave equation and justification of the properties of this reduction are based on the use of quaternions.
Keywords: wave equation, Friedrichs hyperbolic system, quaternion.
Received: 09.09.2009
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 6, Pages 1013–1027
DOI: https://doi.org/10.1007/s11202-010-0100-x
Bibliographic databases:
Document Type: Article
UDC: 517.956.32
Language: Russian
Citation: V. M. Gordienko, “Friedrichs systems for the three-dimensional wave equation”, Sibirsk. Mat. Zh., 51:6 (2010), 1282–1297; Siberian Math. J., 51:6 (2010), 1013–1027
Citation in format AMSBIB
\Bibitem{Gor10}
\by V.~M.~Gordienko
\paper Friedrichs systems for the three-dimensional wave equation
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 6
\pages 1282--1297
\mathnet{http://mi.mathnet.ru/smj2161}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2797597}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 6
\pages 1013--1027
\crossref{https://doi.org/10.1007/s11202-010-0100-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288180800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650728658}
Linking options:
  • https://www.mathnet.ru/eng/smj2161
  • https://www.mathnet.ru/eng/smj/v51/i6/p1282
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:369
    Full-text PDF :140
    References:47
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024