Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 6, Pages 1215–1227 (Mi smj2156)  

This article is cited in 2 scientific papers (total in 2 papers)

Solution of a Busemann problem

V. N. Berestovskiĭ

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science, Omsk
Full-text PDF (348 kB) Citations (2)
References:
Abstract: We give a solution to the problem posed by Busemann which is as follows: Determine the noncompact Busemann $G$-spaces such that for every two geodesics there exists a motion taking one to the other. We prove that each of these spaces is isometric to the Euclidean space or to one of the noncompact symmetric spaces of rank 1 (of negative sectional curvature).
Keywords: Busemann $G$-space, geodesic, aspheric homogeneous Riemannian manifold, Lie group with a left-invariant metric, geodesic orbit space, isotropic homogeneous Riemannian manifold, Euclidean space, symmetric Riemannian space of rank 1.
Received: 15.10.2009
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 6, Pages 962–970
DOI: https://doi.org/10.1007/s11202-010-0095-3
Bibliographic databases:
Document Type: Article
UDC: 513.813+519.46
Language: Russian
Citation: V. N. Berestovskiǐ, “Solution of a Busemann problem”, Sibirsk. Mat. Zh., 51:6 (2010), 1215–1227; Siberian Math. J., 51:6 (2010), 962–970
Citation in format AMSBIB
\Bibitem{Ber10}
\by V.~N.~Berestovski{\v\i}
\paper Solution of a~Busemann problem
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 6
\pages 1215--1227
\mathnet{http://mi.mathnet.ru/smj2156}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2797592}
\elib{https://elibrary.ru/item.asp?id=15563603}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 6
\pages 962--970
\crossref{https://doi.org/10.1007/s11202-010-0095-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288180800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650754515}
Linking options:
  • https://www.mathnet.ru/eng/smj2156
  • https://www.mathnet.ru/eng/smj/v51/i6/p1215
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:410
    Full-text PDF :113
    References:77
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024