Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 5, Pages 1129–1146 (Mi smj2151)  

This article is cited in 18 scientific papers (total in 18 papers)

On the branch points of mappings with the unbounded coefficient of quasiconformality

E. A. Sevost'yanov

Institute of Applied Mathematics and Mechanics, Donetsk, Ukraine
References:
Abstract: We study relations between the quantity characterizing the distortion of families of curves under a given mapping and the structure of the branch point set of this mapping. For $n\ge3$ we establish that the image of the branch point set of an open discrete mapping with an isolated essential singularity is an unbounded set in $\mathbb R^n$ provided that the mapping satisfies certain geometric conditions controlling the distortion of concentric annuli centered at this point.
Keywords: mapping with bounded distortion, mapping with finite distortion, modulus of a family of curves.
Received: 30.11.2008
Revised: 07.05.2010
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 5, Pages 899–912
DOI: https://doi.org/10.1007/s11202-010-0090-8
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: E. A. Sevost'yanov, “On the branch points of mappings with the unbounded coefficient of quasiconformality”, Sibirsk. Mat. Zh., 51:5 (2010), 1129–1146; Siberian Math. J., 51:5 (2010), 899–912
Citation in format AMSBIB
\Bibitem{Sev10}
\by E.~A.~Sevost'yanov
\paper On the branch points of mappings with the unbounded coefficient of quasiconformality
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 5
\pages 1129--1146
\mathnet{http://mi.mathnet.ru/smj2151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768509}
\elib{https://elibrary.ru/item.asp?id=15567528}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 5
\pages 899--912
\crossref{https://doi.org/10.1007/s11202-010-0090-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000283300600014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958591182}
Linking options:
  • https://www.mathnet.ru/eng/smj2151
  • https://www.mathnet.ru/eng/smj/v51/i5/p1129
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024