Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 5, Pages 1086–1101 (Mi smj2148)  

This article is cited in 66 scientific papers (total in 66 papers)

Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold

S. A. Nazarov

Institute of Problems of Mechanical Engineering, St. Petersburg, Russia
References:
Abstract: Considering the example of a mixed boundary value problem for the Helmholtz operator we discuss two methods for finding eigenvalues below the continuous spectrum threshold: one variational and the other – asymptotic. We construct asymptotics for the eigenvalue arising near the threshold as a small obstacle appears in the cylindrical waveguide. The resulting asymptotic formula, its derivation and justification differ substantially from the case of a bounded domain.
Keywords: eigenvalue, discrete spectrum, waveguide, Helmholtz equation, trapped mode.
Received: 20.08.2009
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 5, Pages 866–878
DOI: https://doi.org/10.1007/s11202-010-0087-3
Bibliographic databases:
Document Type: Article
UDC: 519.968:535.4:531.33
Language: Russian
Citation: S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold”, Sibirsk. Mat. Zh., 51:5 (2010), 1086–1101; Siberian Math. J., 51:5 (2010), 866–878
Citation in format AMSBIB
\Bibitem{Naz10}
\by S.~A.~Nazarov
\paper Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 5
\pages 1086--1101
\mathnet{http://mi.mathnet.ru/smj2148}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768506}
\elib{https://elibrary.ru/item.asp?id=15567525}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 5
\pages 866--878
\crossref{https://doi.org/10.1007/s11202-010-0087-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000283300600011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958530305}
Linking options:
  • https://www.mathnet.ru/eng/smj2148
  • https://www.mathnet.ru/eng/smj/v51/i5/p1086
  • This publication is cited in the following 66 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:575
    Full-text PDF :170
    References:89
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024